Paläontologische Zeitschrift

, Volume 88, Issue 1, pp 111–121 | Cite as

Palaeontology in the third dimension: a comprehensive guide for the integration of three-dimensional content in publications

  • Stephan LautenschlagerEmail author
Research Paper


During the last decade, three-dimensional, digital models have become increasingly important in geosciences and in particular in palaeontological research. Although significant advances in hard- and software technology have facilitated the acquisition and creation of such models, the presentation of three-dimensional data is still greatly handicapped by the traditionally two-dimensional means of publication. The ability to integrate three-dimensional (3D) models, which can be interactively manipulated, into portable document format (PDF) documents not only considerably improves their accessibility, but also represents an innovative, but so far neglected, approach for the presentation and communication of digital data. This article introduces and illustrates a comprehensive workflow for the creation of 3D PDFs, incorporating different techniques and methodological steps, and using both commercial and freely available software resources. Advantages and disadvantages of each method are discussed, and are accompanied by selected examples of digital models. These examples encompass different methods of data acquisition (computed tomography, synchrotron radiation X-ray tomographic microscopy, photogrammetry) and span a wide range of sizes and taxonomic groups. To the best of the author’s knowledge, this article represents the first application of 3D PDF technology fully integrated into a scientific publication in palaeontology or even geosciences, and not restricted to supplementary material. It provides the reader with extended visual information and facilitates the dissemination of data. As both authors and readers benefit greatly from their usage, it is argued that 3D PDFs should become an accepted standard in palaeontological publications of three-dimensional models.


3D PDF 3D visualisation Data dissemination U3D Virtual palaeontology 


In den letzten zehn Jahren haben dreidimensionale, digital Modelle in den Erdwissenschaften, und besonders in der Paläontologie, zunehmend an Bedeutung gewonnen. Wesentliche Fortschritte in Hard- und Softwaretechnologie haben dazu beigetragen, die Erstellung solcher Modelle zu erleichtern. Dennoch ist die Präsentation dieser Modelle auf Grund der nach wie vor traditionellen, zweidimensionalen Art der Publikation stark eingeschränkt. Die Möglicheit, 3D Modelle in PDF-Dokumente einzubetten, erleichtert nicht nur den Zugang zu solchen Modellen, sondern stellt auch eine innovative, wenn auch bisher stark vernachlässigte, Methode zur Verbreitung digitaler Daten dar. Der vorliegende Artikel stellt umfassend die einzelnen Arbeitsschritte und Möglichkeiten zur Erstellung von 3D PDF-Dokumenten dar. Vor- und Nachteile der verschiedenen Vorgehensweisen werden diskutiert und durch ausgewählte Beispiele ergänzt. Letztere decken sowohl einen Großteil der zur Verfügung stehenden Technologien (z. B. Computer- und Synchrotrontommographie, Photogrammetrie), als auch der verwendbaren Fossilgruppen ab. Nach Erachten des Autors, stellt dieser Artikel die vermutlich erste Anwendung der 3D PDF-Technologie in den paläontologischen Wissenschaften dar, die komplett in eine wissenschaftliche Publikation eingebettet ist. Dies erlaubt dem Leser visuelle Informationen schnell und mühelos aufzunehmen und erleichtert den Austausch digitaler Daten. Da sowohl Autoren als auch Leser maßgeblich davon profitieren können, wird vorgeschlagen, dass diese Technologie zum Standard für die Publikation dreidimensionaler Daten in der Paläontologie werden sollte.


3D PDF 3D Visualisierung U3D Datenaustausch Virtuelle Paläontologie 



Jen Bright, Laura Foster, Claudia Hildebrandt and Emily Rayfield (all University of Bristol) kindly provided the digital models and specimens illustrated in Figs. 3, 4 and 5 of this article. Special thanks are due to Perle Altangerel (Mongolian Academy of Sciences, Ulaanbaatar) for making the specimen of Erlikosaurus andrewsi available for scanning, and to Andrew Ramsey (Nikon Metrology) for his support with the scanning of the specimen. Martin Rücklin (University of Bristol) is thanked for making his version of GeoMagic Studio available for use. Imran Rahman (University of Bristol) carefully read earlier versions of the manuscript and provided insightful advice. Russell Garwood (University of Manchester) and Heinrich Mallison (Museum für Naturkunde Berlin) are thanked for constructive comments and suggestions improving this paper. Scanning of the Oridorsalis umbonatus specimen has been supported by the European Commission under the 7th Framework Programme: Research Infrastructures. Grant Agreement Number 226716 (SLS grant number 20090840). This research is supported by a doctoral fellowship to Stephan Lautenschlager by the Volkswagen Foundation.

Supplementary material

12542_2013_184_MOESM1_ESM.pdf (27.7 mb)
Supplementary material (PDF 28322 kb)


  1. Anderson, P.S.L., J.A. Bright, P.G. Gill, C. Palmer, and E.J. Rayfield. 2012. Models in palaeontological functional analysis. Biology Letters 8: 119–122.CrossRefGoogle Scholar
  2. Balanoff, A. M., and T. B. Rowe. 2007. Osteological description of an embryonic skeleton of the extinct elephant bird, Aepyornis (Palaeognathae, Ratitae). Journal of Vertebrate Paleontology, Memoir 9 Supplement to volume 27:1–54 (plus supplementary CD-ROM).Google Scholar
  3. Barnes, D.G., and C.J. Fluke. 2008. Incorporating interactive three-dimensional graphics in astronomy research papers. New Astronomy 13: 599–605.CrossRefGoogle Scholar
  4. Bäumler, N., G. Haszpruner, and B. Ruthensteiner. 2008. 3D interactive microanatomy of Omalogyra atomus (Philippi, 1841) (Gastropoda, Heterobranchia, Omalogyridae). Zoosymposia 1: 101–118.Google Scholar
  5. Bright, J.A., and E.J. Rayfield. 2011. Sensitivity and ex vivo validation of finite element models of the domestic pig cranium. Journal of Anatomy 219(4): 456–471.CrossRefGoogle Scholar
  6. Butler, R.J., L.B. Porro, P.M. Galton, and L.M. Chiappe. 2012. Anatomy and cranial functional morphology of the small-bodied dinosaur Fruitadens haagarorum from the Upper Jurassic of the USA. PLoS ONE 7(4): e31556.CrossRefGoogle Scholar
  7. Cammer, S. 2007. SChiSM2: creating interactive web page annotations of molecular structure models using Jmol. Bioinformatics 23: 383–384.CrossRefGoogle Scholar
  8. Clark, J.M., A. Perle, and M.A. Norell. 1994. The skull of Erlicosaurus andrewsi, a Late Cretaceous “Segnosaur” (Theropoda: Therizinosauridae) from Mongolia. American Museum Novitates 3115: 1–39.Google Scholar
  9. Falkingham, P.L. 2011. Acquisition of high-resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontologia Electronica 15(1): 1–15.Google Scholar
  10. Foster, L. C., D. N. Schmidt, E. Thomas, S. Arndt and A. Ridgwell. 2013. Surviving rapid climate change in the deep-sea during the Paleogene hyperthermals. In Proceedings of the National Academy of Sciences (In press).Google Scholar
  11. Garwood, R.J., J.A. Dunlop, G. Giribet, and M.D. Sutton. 2011. Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nature Communications 2: 444.CrossRefGoogle Scholar
  12. Garwood, R.J., J.A. Dunlop, and M.D. Sutton. 2009. High-fidelity X-ray microtomography reconstruction of siderite-hosted Carboniferous arachnids. Biology Letters 5: 841–844.CrossRefGoogle Scholar
  13. Herraez, A. 2006. Biomolecules in the computer: Jmol to the rescue. Biochemical Education 34: 255–261.Google Scholar
  14. Hutchinson, J.R., and S.M. Gatesy. 2006. Dinosaur locomotion: beyond the bones. Nature 440(7082): 292–294.CrossRefGoogle Scholar
  15. Knoll, F., L.M. Witmer, F. Ortega, R.C. Ridgely, and D. Schwarz-Wings. 2012. The braincase of the basal sauropod dinosaur Spinophorosaurus and 3D reconstructions of the cranial endocast and inner ear. PLoS ONE 7(1): e30060. doi: 10.1371/journal.pone.0030060.CrossRefGoogle Scholar
  16. Kumar, P., A. Ziegler, A. Grahn, C.S. Hee, and A. Ziegler. 2010. Leaving the structural ivory tower, assisted by interactive 3D PDF. Trends in Biochemical Sciences 35(8): 419–422.CrossRefGoogle Scholar
  17. Kumar, P., A. Ziegler, J. Ziegler, B. Uchanska-Ziegler, and A. Ziegler. 2008. Grasping molecular structures through publication-integrated 3D models. Trends in Biochemical Sciences 33(9): 408–412.CrossRefGoogle Scholar
  18. Lautenschlager, S., E.J. Rayfield, A. Perle, L.E. Zanno, and L.M. Witmer. 2012. The endocranial anatomy of Therizinosauria and its implications for sensory and cognitive function. PLoS ONE 7(12): e52289.CrossRefGoogle Scholar
  19. Lukeneder, A. 2012. Computed 3D visualisation of an extinct cephalopod using computer tomographs. Computers & Geosciences 45: 68–74.CrossRefGoogle Scholar
  20. Martz, E. 2002. Protein explorer: Easy yet powerful macromolecular visualization. Trends in Biochemical Sciences 27: 107–109.CrossRefGoogle Scholar
  21. Maunsell, J. 2010. Announcement regarding supplemental material. Journal of Neuroscience 30: 10599–10600.Google Scholar
  22. Miyahsita, T., V.M. Arbour, L.M. Witmer, and P.J. Currie. 2011. The internal cranial morphology of an armoured dinosaur Euoplocephalus corroborated by X-ray computed tomographic reconstruction. Journal of Anatomy 219: 661–675.CrossRefGoogle Scholar
  23. Murdock, D. J. E., P. C. J. Donoghue, S. Bengtson., and F. Marone. 2012. Ontogeny and microstructure of the enigmatic Cambrian tommotiid Sunnaginia Missarzhevsky, 1969. Palaeontology 55(3):661–676.Google Scholar
  24. Murienne, J., A. Ziegler, and B. Ruthensteiner. 2008. A 3D revolution in communicating science. Nature 453: 450.CrossRefGoogle Scholar
  25. Pierce, S.E., J.A. Clack, and J.R. Hutchinson. 2012. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 486(7404): 523–526.Google Scholar
  26. Rahman, I.A., S. Zamora, and G. Geyer. 2010. The oldest stylophoran echinoderm: a new Ceratocystis from the Middle Cambrian of Germany. Paläontologische Zeitschrift 84: 227–237.CrossRefGoogle Scholar
  27. Raush, E., M. Totrov, B.D. Marsden, and R. Abagyan. 2009. A new method for publishing three-dimensional content. PLoS ONE 4(10): e7394.CrossRefGoogle Scholar
  28. Rayfield, E. 2004. Cranial mechanics and feeding in Tyrannosaurus Rex. Proceedings of the Royal Society London, Series B 271: 1451–1459.CrossRefGoogle Scholar
  29. Rayfield, E. 2007. Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences 35: 541–576.CrossRefGoogle Scholar
  30. Rowe, T.B., and L.R. Frank. 2011. The disappearing third dimension. Science 331: 712–714.CrossRefGoogle Scholar
  31. Rücklin, M., S. Giles, P. Janvier, and P.C.J. Donoghue. 2011. Teeth before jaws? Comparative analysis of the structure and development of the external and internal scales in the extinct jawless vertebrate Loganellia scotica. Evolution & Development 13(6): 523–532.CrossRefGoogle Scholar
  32. Ruthensteiner, B., N. Bäumler, and D. G. Barnes. 2010. Interactive 3D volume rendering in biomedical publications. Micron 41:886, e881–886, e817.Google Scholar
  33. Ruthensteiner, B., and M. Heß. 2008. Embedding 3D models of biological specimens in PDF publications. Microscopy Research and Technique 71: 778–786.CrossRefGoogle Scholar
  34. Sampson, S.D., and L.M. Witmer. 2007. Craniofacial anatomy of Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, Memoir 8: 32–102.CrossRefGoogle Scholar
  35. Sutton, M.D., D.E.G. Briggs, D.J. Siveter, D.J. Siveter, and J.D. Sigwart. 2012a. A Silurian armoured aplacophoran and implications for molluscan phylogeny. Nature 490(7418): 94–97.CrossRefGoogle Scholar
  36. Sutton, M.D., R.J. Garwood, D.J. Siveter, and D.J. Siveter. 2012b. SPIERS and VAXML; a software toolkit for tomographic visualisation and a format for virtual specimen interchange. Palaeontologia Electronica 15(2): 1–14.Google Scholar
  37. Tyzack, J.K. 2008. Dragging (and zooming and rotating) publication of 3D molecular structures into the 21st century. Trends in Biochemical Sciences 33(9): 405–407.CrossRefGoogle Scholar
  38. Vasilyev, V. 2010. Towards interactive 3D graphics in chemistry publications. Theoretical Chemistry Accounts 125: 173–176.CrossRefGoogle Scholar
  39. Witmer, L.M., and R.C. Ridgely. 2008. The paranasal air sinuses of predatory and armored dinosaurs (Archosauria: Theropoda and Ankylosauria) and their contribution to cephalic structure. The Anatomical Record 291: 1362–1388.CrossRefGoogle Scholar
  40. Witmer, L. M., Ryan C. Ridgely, D. L. Dufeau, and M. C. Semones. 2008. Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In Anatomical ImagingTowards a new morphology, eds. H. Endo, and R. Frey, 67–87. Berlin: Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity of BristolBristolUK

Personalised recommendations