Paläontologische Zeitschrift

, Volume 87, Issue 3, pp 423–430 | Cite as

A goose-sized anseriform bird from the late Oligocene of France: the youngest record and largest species of Romainvilliinae

  • Gerald Mayr
  • Vanesa L. De Pietri
Research Paper


We describe a new anseriform bird from the late Oligocene of Saint-André, Marseille, in southern France. Saintandrea chenoides, gen. et sp. nov. is the first avian species reported from the locality, which is well known for its mammalian fossils. The new species belongs to the extinct Romainvilliinae and represents the latest occurrence of the taxon, which was before only known from the late Eocene and early Oligocene of Europe. S. chenoides is also the largest species of Romainvilliinae and increases the known morphological diversity of the taxon. The identification of a goose-sized representative of the Romainvilliinae in the late Oligocene of Europe raises the possibility that some of the large late Paleogene or early Neogene Anseriformes with uncertain phylogenetic affinities also belong to this taxon.


Fossil birds Anseriformes Chattian Saint-André Saintandreachenoides, gen. et sp. nov. 


Wir beschreiben einen anseriformen Vogel aus dem späten Oligozän von Saint-André, Marseille, in Südfrankreich. Saintandrea chenoides, gen. et sp. nov. ist die erste Vogelart von dieser für ihre Säugetierfossilien bekannten Fundstelle. Die neue Art gehört zu dem ausgestorbenen Taxon Romainvilliinae und stellt den spätesten Nachweis dieses Taxons dar, welches zuvor nur aus dem späten Eozän und frühen Oligozän bekannt war. S. chenoides ist zudem der größte Vertreter der Romainvilliinae und erhöht die bekannte morphologische Diversität des Taxons. Identifikation eines gänsegroßen Vertreters der Romainvilliinae im späten Oligozän Europas wirft die Möglichkeit auf, dass andere große Anseriformes aus dem späten Paläogen und frühen Neogen, deren phylogenetische Stellung unsicher ist, ebenfalls zu diesem Taxon gehören.


Fossile Vögel Anseriformes Chattium Saint-André Saintandreachenoides gen. et sp. nov. 



We thank Loic Costeur for access to the fossil material and Markus Weick for preparation of the bones, which were badly affected by pyrite decay. We are further indebted to Thierry Smith and Annelise Folie for access to specimens in IRSNB, and to the reviewers, Trevor Worthy and Cécile Mourer-Chauviré, for comments, which improved the manuscript. The work of VLD was supported by the Forschung und Lehre (Natural History Museum Basel) fund.


  1. Baumel, J.J., and L.M. Witmer. 1993. Osteologia. In Handbook of avian anatomy: Nomina Anatomica Avium, eds. J.J. Baumel, A.S. King, J.E. Breazile, H.E. Evans, and J.C. Vanden Berge, Publications of the Nuttall Ornithological Club 23: 45–132.Google Scholar
  2. Brunet, M., M. Hugueney, and Y. Jehenne. 1981. Cournon-les-Souméroux: un nouveau site à vertébrés d’Auvergne; sa place parmi les faunes de l’Oligocène supérieur d’Europe. Geobios 14: 323–359.CrossRefGoogle Scholar
  3. Cheneval, J. 1984. Les oiseaux aquatiques (Gaviiformes à Ansériformes) du gisement aquitanien de Saint-Gérand-le-Puy (Allier, France): Révision systématique. Palaeovertebrata 14: 33–115.Google Scholar
  4. Donne-Goussé, C., V. Laudet, and C. Hänni. 2002. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Molecular Phylogenetics and Evolution 23: 339–356.CrossRefGoogle Scholar
  5. Elzanowski, A., and T. Stidham. 2010. Morphology of the quadrate in the Eocene anseriform Presbyornis and extant galloanserine birds. Journal of Morphology 271: 305–323.Google Scholar
  6. Ericson, P.G.P. 1997. Systematic relationships of the palaeogene family Presbyornithidae (Aves: Anseriformes). Zoological Journal of the Linnean Society 121: 429–483.CrossRefGoogle Scholar
  7. Feduccia, A. 1999. The origin and evolution of birds, 2nd ed. New Haven: Yale University Press.Google Scholar
  8. Gonzalez, J., H. Düttmann, and M. Wink. 2009. Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology 279: 310–318.CrossRefGoogle Scholar
  9. Harrison, C.J.O., and C.A. Walker. 1979. Birds of the British Lower Oligocene. Tertiary Research Special Paper 5: 29–43.Google Scholar
  10. Kurochkin, E.N. 1968. New Oligocene birds from Kazakhstan. Paleontologicheskii Zhurnal 1: 92–101 (in Russian).Google Scholar
  11. Lambrecht, K. 1931. Cygnopterus und Cygnavus, zwei fossile Schwäne aus dem Tertiär Europas. Bulletin du Musée royal d’Histoire naturelle de Belgique 7(31): 1–6.Google Scholar
  12. Lebedinsky, N.G. 1927. Romainvillia Stehlini n.g. n.sp. canard eocène provenant des marnes blanches du Bassin de Paris. Mémoires de la société paléontologique suisse 17: 1–8.Google Scholar
  13. Livezey, B.C. 1986. A phylogenetic analysis of recent anseriform genera using morphological characters. Auk 103: 737–754.Google Scholar
  14. Livezey, B.C. 1997. A phylogenetic analysis of basal Anseriformes, the fossil Presbyornis, and the interordinal relationships of waterfowl. Zoological Journal of the Linnean Society 121: 361–428.Google Scholar
  15. Livezey, B.C., and L.D. Martin. 1988. The systematic position of the Miocene anatid Anas[?] blanchardi Milne-Edwards. Journal of Vertebrate Paleontology 8: 196–211.CrossRefGoogle Scholar
  16. Mayr, G. 2008. Phylogenetic affinities and morphology of the late Eocene anseriform bird Romainvillia stehlini Lebedinsky, 1927. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 248: 365–380.CrossRefGoogle Scholar
  17. Mayr, G. 2009. Paleogene fossil birds. Heidelberg: Springer.CrossRefGoogle Scholar
  18. Mayr, G., and R. Smith. 2001. Ducks, rails, and limicoline waders (Aves: Anseriformes, Gruiformes, Charadriiformes) from the lowermost Oligocene of Belgium. Geobios 34: 547–561.CrossRefGoogle Scholar
  19. Mayr, G., and R. Smith. 2002. Avian remains from the lowermost Oligocene of Hoogbutsel (Belgium). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique 72: 139–150.Google Scholar
  20. Ménouret, B., and C. Guérin. 2009. Diaceratherium massiliae nov. sp. des argiles oligocènes de Saint-André et Saint-Henri à Marseille et de Les Milles près d’Aix-en-Provence (SE de la France), premier grand Rhinocerotidae brachypode européen. Geobios 42: 293–327.CrossRefGoogle Scholar
  21. Miller, A.H., and L.V. Compton. 1939. Two fossil birds from the Lower Miocene of South Dakota. Condor 41: 153–156.CrossRefGoogle Scholar
  22. Mlíkovský, J. 2002. Cenozoic birds of the world. Part 1: Europe. Praha: Ninox Press.Google Scholar
  23. Mlíkovský, J., and P. Švec. 1986. Review of the Tertiary waterfowl (Aves: Anseridae) of Asia. Věstník Československé Společnosti Zoologické 50: 259–272.Google Scholar
  24. Mourer-Chauviré, C., D. Berthet, and M. Hugueney. 2004. The late Oligocene birds of the Créchy quarry (Allier, France), with a description of two new genera (Aves: Pelecaniformes: Phalacrocoracidae, and Anseriformes: Anseranatidae). Senckenbergiana Lethaea 84: 303–315.CrossRefGoogle Scholar
  25. Nessov, L.A. 1992. Mesozoic and Paleogene birds of the USSR and their paleoenvironments. In Papers in avian paleontology honoring Pierce Brodkorb, ed. K.E. Campbell. Natural History Museum of Los Angeles County, Science Series 36: 465–478.Google Scholar
  26. Olson, S.L. 1985. The fossil record of birds. In Avian biology, vol. 8, ed. D.S. Farner, J.R. King, and K.C. Parkes, 79–238. New York: Academic Press.CrossRefGoogle Scholar
  27. Olson, S.L. 1989. Aspects of global avifaunal dynamics during the Cenozoic. In Acta XIX Congressus Internationalis Ornithologici, ed. H. Ouellet, 2023–2029. Ottawa: University of Ottawa Press.Google Scholar
  28. Olson, S.L. 1999. The anseriform relationships of Anatalavis Olson and Parris (Anseranatidae), with a new species from the Lower Eocene London Clay. In Avian Paleontology at the Close of the 20th Century: Proceedings of the 4th International Meeting of the Society of Avian Paleontology and Evolution, Washington, D.C., 4-7 June 1996, ed. S.L. Olson. Smithsonian Contributions to Paleobiology 89: 231–243.Google Scholar
  29. Olson, S.L., and A. Feduccia. 1980. Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae). Smithsonian Contributions to Zoology 323: 1–24.Google Scholar
  30. Robertson, B.C., and S.J. Goldstien. 2012. Phylogenetic affinities of the New Zealand blue duck (Hymenolaimus malacorhynchos). Notornis 59: 49–59.Google Scholar
  31. Worthy, T.H. 2009. Descriptions and phylogenetic relationships of two new genera and four new species of Oligo-Miocene waterfowl (Aves: Anatidae) from Australia. Zoological Journal of the Linnean Society 156: 411–454.CrossRefGoogle Scholar
  32. Worthy, T.H., and M.S.Y. Lee. 2008. Affinities of Miocene waterfowl (Anatidae: Manuherikia, Dunstanetta and Miotadorna) from the St. Bathans Fauna, New Zealand. Palaeontology 51: 677–708.CrossRefGoogle Scholar
  33. Worthy, T.H., A.J.D. Tennyson, C. Jones, J.A. McNamara, and B.J. Douglas. 2007. Miocene waterfowl and other birds from central Otago, New Zealand. Journal of Systematic Palaeontology 5: 1–39.CrossRefGoogle Scholar
  34. Worthy, T.H., A.J.D. Tennyson, S.J. Hand, and R.P. Scofield. 2008. A new species of the diving duck Manuherikia and evidence for geese (Aves: Anatidae: Anserinae) in the St Bathans Fauna (Early Miocene), New Zealand. Journal of the Royal Society of New Zealand 38: 97–114.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Sektion Ornithologie, Forschungsinstitut SenckenbergFrankfurt am MainGermany
  2. 2.Naturhistorisches Museum Basel, GeowissenschaftenBaselSwitzerland

Personalised recommendations