Paläontologische Zeitschrift

, Volume 87, Issue 1, pp 83–120 | Cite as

Early adaptive radiations of Aplodontoidea (Rodentia, Mammalia) on the Holarctic region: systematics, and phylogenetic and paleobiogeographic implications

  • Monique Vianey-Liaud
  • Helder Gomes Rodrigues
  • Laurent Marivaux
Research Paper

Abstract

The Aplodontoidea, now restricted to only one North American species (Aplodontia rufa), have shown a wide Holarctic extension since the Upper Eocene. As their fossil record is poor, their phylogenetic relationships and the origins of their successive radiations remain unclear. We perform here phylogenetic analyses, primarily based on dental evidence (94 dental of 97 characters), restricted to Paleogene and early Miocene taxa (46 taxa) in order to avoid biases introduced by substantially derived (divergent) taxa. We confirm the inclusion of some problematic genera such as Cedromus or Douglassciurus within Sciuroidea rather than in Aplodontoidea. Ephemeromys and Lophallomys appear as the most basal members of the Aplodontoidea, and Epeiromys is the closest outgroup of the Sciuroidea-Aplodontoidea clade. The relationships among the “prosciurines” remain unclear, with paraphyletic genera such as Prosciurus and Haplomys. Their diagnoses are reevaluated and a new genus is described. The Aplodontidae, including the clade of the latter, and Haplomys liolophus display a dichotomy between Ansomyinae and Aplodontinae, the two crown groups. The first clade formed by the European species argoviensis and descendens (referred to a new genus) can be proposed as a sister group of the species of Ansomys. The second branch of the dichotomy includes the European Plesispermophilus and Sciurodon as basal groups. The species of Parallomys do not form a clade, and the genus appears paraphyletic. The last dichotomy separates the Allomys clade from the ‘meniscomyine’ clade. Comparisons of the selected species allow consideration of their patterns of dental evolution (e.g. enlargement of P4, development of a metaloph—protoloph disto-mesial connection, of crescentic shape in main cusps and ectoloph, of a buccal protruding compressed mesostyle, of a metastylid crest or an anterior spur of the hypoconid, etc.). The split between sciuroids and aplodontoids occurred in North America, and then aplodontoids dispersed rapidly throughout the whole Holarctic region. The first aplodontid adaptive radiation took place either in North America or in Asia. Periodic exchanges occurred between Europe, Asia and North America, and the last radiations (meniscomyines) were restricted in North America.

Keywords

Rodentia Aplodontoidea Systematics Cladistics Teeth Paleogene Early Miocene Adaptive radiations 

Kurzfassung

Die Aplodontoidea waren seit dem Ober-Eozän holarktisch weit verbreitet, sind heute aber auf eine nordamerikanische Art (Aplodontia rufa) beschränkt. Da ihre fossilen Belege spärlich sind, bleiben ihre phylogenetischen Beziehungen sowie die Wurzeln ihrer aufeinander folgenden Radiationen unklar. Wir haben eine phylogenetische Analyse der Aplodontoidea durchgeführt, die in erster Linie auf Zahnmerkmalen basiert (94 von 97 Merkmalen). Die Auswahl der Taxa ist auf das Paläogen und frühe Miozän beschränkt (46 Taxa), um eine Verzerrung durch stark abgeleitete (divergente) Taxa zu vermeiden. Nach unserer Analyse gehören einige bisher fragliche Sciuroidea wie Cedromus oder Douglassciurus tatsächlich in diese Gruppe und nicht zu den Aplodontoidea. Ephemeromys und Lophallomys erweisen sich als ursprünglichste Mitglieder der Aplodontoidea, und Epeiromys stellt die Schwestergruppe des von Sciuroidea und Aplodontoidea gebildeten Taxons dar. Die Beziehungen zwischen den “Prosciurinen” bleiben unklar mit paraphyletischen Gattungen wie Prosciurus und Haplomys. Ihre Diagnosen werden revidiert und eine neue Gattung wird beschrieben. Die Aplodontidae inklusive der neuen Gattung und von Haplomys liolophus bilden eine Dichotomie mit Ansomyinae und Aplodontinae. Der erste Zweig, der aus den europäischen Arten argoviensis und descendens (zu einer neuen Gattung gestellt) besteht, bildet die Schwestergruppe zur Gattung Ansomys. Der zweite Ast der Dichotomie umfasst den europäischen Plesispermophilus und auch Sciurodon als basale Gruppen. Die Arten von Parallomys stellen kein Monophylum dar, und die Gattung erscheint paraphyletisch. Die letzte Dichotomie trennt den Allomys-Zweig von dem ‘meniscomyinen’ Zweig. Ein Vergleich der ausgewählten Arten zeigt die evolutiven Veränderungen im Gebiss (z.B. Vergrößerung des P4, Entwicklung einer disto-mesialen Verbindung zwischen Metaloph und Protoloph, eines bogenförmigen Verlaufs von Haupthöckern und Ectoloph, eines Metastylid-Grates oder eines anterioren Vorsprungs des Hypoconids usw….). Die Aufspaltung von Sciuroiden und Aplodontoiden erfolgte in Nordamerika, und darauf verbreiteten sich die Aplodontoiden im gesamten holarktischen Bereich. Die erste adaptive Radiation der Aplodontoiden erfolgte entweder in Nordamerika oder in Asien. Es kam zu wiederholtem Austausch zwischen Europa, Asien und Nordamerika, aber die letzten Radiationen (Meniscomyinen) waren auf Nordamerika beschränkt.

Schlüsselwörter

Rodentia Aplodontoidea Systematik Kladistik Zähne Paläogen Frühes Miozän Adaptative Radiationen 

References

  1. Barnosky, A.D. 1986. Arikareean, Hemingfordian, and Barstovian mammals from the Colter Formation, Jackson Hole, Wyoming. Bulletin of the Carnegie Museum of Natural History 26: 1–69.Google Scholar
  2. Black, C.C. 1961. Rodents and lagomorphs from the Miocene Fort Logan and deep river formations of Montana. Postilla 48: 1–20.Google Scholar
  3. Black, C.C. 1971. Paleontology and geology of the Badwater Creek area, central Wyoming. Part 7. Rodents of the family Ischyromyidae. Annals of Carnegie Museum 43: 179–217.Google Scholar
  4. Bohlin, B. 1946. The fossil mammals from the tertiary deposit of Taben-Buluk, Western Kansu. Part II: Simplicidentata, Carnivora, Artiodactyla, Perissodactyle, and Primates reports from the Sino-Swedish expedition. Stockholm 28: 1–259.Google Scholar
  5. Brandt, J.F. 1855. Beiträge zur näheren Kenntnis der Säugetiere Russlands. Mémoires de l’Academie impériale des sciences de St. Pétersbourg 9: 125–365.Google Scholar
  6. Cope, E.D. 1873. Third notice of extinct Vertebrata from the tertiary of the plains. Paleontological Bulletin 16: 1–8.Google Scholar
  7. Cope, E.D. 1879. On some characters of the Miocene fauna of Oregon. Proceedings of the American Philosophical Society 18: 63–78.Google Scholar
  8. Cope, E.D. 1881. The Rodentia of the American Miocene. American naturalist 15: 586–587.Google Scholar
  9. Daxner-Höck, G., D. Badamgarav, and M. Erbajeva. 2010. Oligocene stratigraphy based on a sediment-basalt association in Central Mongolia (Taatsiin Gol and Taatsiin Tsagaan Nuur Area, Valley of Lakes): Review of Mongolian-Austrian project. Vertebrata Palasiatica 48: 348–366.Google Scholar
  10. Dawson, M. R., Li, C., and T. Qi. 1984. Eocene ctenodactyloid rodents (Mammalia) from eastern and central Asia. In Papers in Vertebrate Paleontology Honoring Carnegie Museum of Natural History, ed. Robert Warren Wilson, and Mengel, R.M., 138–150. Special Publication 9.Google Scholar
  11. Dehm, R. 1950. Die Nagetiere aus dem Mittel-Miocän (Burdigalium) von Wintershof—West bei Eichstätt in Bayern. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. Abh. B91:321–428.Google Scholar
  12. Douglass, E. 1901. Fossil mammalia of the white river beds of Montana. Transactions of the American Philosophical Society n.s. 20:237–279.Google Scholar
  13. Emry, R.J., and W. Korth. 2007. A new genus of squirrel (Rodentia, Sciuridae) from the mid-cenozoic of North. Journal of Vertebrate Paleontology 27: 693–698.Google Scholar
  14. Emry, R.J., and R.W. Thorington. 1983. Descriptive and comparative osteology of the oldest fossil squirrel, Protosciurus (Rodentia, Sciuridae). Smithsonian Contributions to Paleontology 47: 1–35.Google Scholar
  15. Fejfar, O., Z. Dvorák, and E. Kadlecová. 2003. New record of early Miocene (MN3a) mammals in the open brown coal pit Merkur, North Bohemia, Czech Republic, 163–182. Rotterdam: DEINSEA.Google Scholar
  16. Filhol, H. 1882. Description d’un nouveau genre de rongeurs provenant des Phosphorites du Quercy. Bulletin de la Société Philomatique de Paris 7: 1–2.Google Scholar
  17. Fischer de Waldheim, G. 1817. Adversaria zoologica. Memoires de la Société Impériale des Naturalistes du Moscou 5: 357–428.Google Scholar
  18. Flynn, L.J., and L.L. Jacobs. 2007. Aplodontoidea. In Evolution of tertiary mammals of North America, 2: Small mammals, xenarthrans and marine mammals, vol. 22, eds. Janis, C.M., Gunnel, G.F., and Uhen, M.D., 377–390. Cambridge: Cambridge University Press.Google Scholar
  19. Galbreath, E.C. 1953. A contribution to the tertiary geology and paleontology of northeastern Colorado. University of Kansas Paleontological Contributions, Vertebrata 4: 1–120.Google Scholar
  20. Gray, J.E. 1821. On the natural arrangement of vertebrose animals. London Medical Repository 15: 296–310.Google Scholar
  21. Goodwin, H.T. 2008. Sciuridae. In Evolution of tertiary mammals of North America. 2: Small mammals, edentates, and marine mammals, vol. 21, eds. Janis C.M., Gunnell G.F., and M. Uhen, 376. Cambridge University Press, Cambridge, UK.Google Scholar
  22. Heissig, K. 1979. Die frühesten Flughörnchen und primitive Ailuravinae (Rodentia, Mammalia) aus dem süddeutschen Oligozän. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 19: 139–169.Google Scholar
  23. Hopkins, S.S.B. 2001. Preliminary phylogenetic analysis of aplodontid rodents reveals history of repeated Holarctic immigrations. Journal of Vertebrate Paleontology 21: 63A.Google Scholar
  24. Hopkins, S.S.B. 2004. Phylogeny and biogeography the genus Ansomys (Rodentia, Aplodontidae), and description of a new species from the Barstovian (mid-Miocene of Montana). Journal of Paleontology 78: 731–740.CrossRefGoogle Scholar
  25. Hopkins, S.S.B. 2008. Phylogeny and evolutionary history of the Aplodontoidea (Mammalia: Rodentia). Zoological Journal of the Linnean Society 153: 769–838.CrossRefGoogle Scholar
  26. Höck, V., Daxner-Höck, G., Schmid, H.P., Badamgarav, D., Frank, W., Furtmüller, G., Montag, O., Barsbold, R., Khand, Y., and J. Sodov. 1999. Oligocene-Miocene sediments, fossils and basalts from the Valley of Lakes (Central Mongolia)—An integrated Study. Mitt. Österr. Geol. Ges 90: 83–125.Google Scholar
  27. Ivy, L.D. 1990. Systematics of late Paleocene and early Eocene Rodentia (Mammalia) from the Clarks Fork Basin, Wyoming. Contributions of the Museum of Paleontology, the University of Michigan 28: 21–70.Google Scholar
  28. Jepsen, G.L. 1937. A Paleocene rodent, Paramys atavus. Proceedings of the American Philosophical Society 78: 291–301.Google Scholar
  29. Korth, W.W. 1981. New Oligocene Rodents from North America. Annals of Carnegie Museum 50: 289–318.Google Scholar
  30. Korth, W.W. 1986. Aplodontid rodents of the genus Pelycomys Galbreath from the Orellan (Oligocene) of Nebraska. Journal of Mammalogy 67: 545–550.CrossRefGoogle Scholar
  31. Korth, W.W. 1987. Sciurid rodents (Mammalia) from the Chadronian and Orellan (Oligocene) of Nebraska. Journal of Paleontology 61: 1247–1255.Google Scholar
  32. Korth, W.W. 1989. Aplodontid rodents (Mammalia) from the Oligocene (Orellan and Whitneyan) Brule Formation, Nebraska. Journal of Vertebrate Paleontology 9: 400.CrossRefGoogle Scholar
  33. Korth, W.W. 1992a. Fossil mammals from the Harrison Formation (late Arikarean, Earliest Miocene), Cherry County, Nebraska. Annals of Carnegie Museum 61: 69–131.Google Scholar
  34. Korth, W.W. 1992b. A new genus of Prosciurine rodent (Mammalia: Rodentia: Aplodontidae) from the Oligocene (Orellan) of Montana. Annals of Carnegie Museum 61: 171–175.Google Scholar
  35. Korth, W.W. 1994a. The tertiary record of rodents in North America, 319. New York: Plenum Press.Google Scholar
  36. Korth, W.W. 1994b. A new species of the rodent Prosciurus (Aplodontidae, Prosciurinae) from the Orellan (Oligocene) of North Dakota and Nebraska. Journal of Mammalogy 75: 478–482.CrossRefGoogle Scholar
  37. Korth, W.W. 2007. A new species of Ansomys (Rodentia, Aplodontidae) from the late Oligocene (latest Whitneyan-Earliest Arikareean) of South Dakota. Journal of Vertebrate Paleontology 27: 740–743.CrossRefGoogle Scholar
  38. Korth, W.W., and R.J. Emry. 1991. The skull of Cedromus and a review of the Cedromurinae (Rodentia, Sciuridae). Journal of Paleontology 65: 984–994.Google Scholar
  39. Kowalski, K. 1974. Middle Oligocene rodents from Mongolia. Results of the Polish-Mogolian Paleontological expeditions Part V. Paleontologica Polonica 30: 147–178.Google Scholar
  40. Kristkoiz, A. 1992. Zahnmorphologische und schädelanatomische Untersuchungen an nagetieren aus dem Oberoligozân von Gaimersheim (Süddeutschland). Bayerische. Akademie.der Wissenschaften., München, Abh. nf 167: 1–137.Google Scholar
  41. Kratz, B.P., and J.H. Geisler. 2010. Eocene-Oligocene transition in Central Asia and its effect on mammalian evolution. Geol 38: 111–114.CrossRefGoogle Scholar
  42. Lopatin, A.V. 2000. New early Miocene Aplodontidae and Eomyidae (Rodentia, Mammalia) from the Aral Formation of the Altynshokysu Locality (North Aral Region). Paleontologisheskii Zhurnal, Moscow 2: 81–85.Google Scholar
  43. Macdonald, J.R. 1963. The Miocene faunas from the Wounded Knee area of western South Dakota. Bulletin of the American Museum of Natural History 125: 139–238.Google Scholar
  44. MacDonald, J.R. 1970. Review of the Miocene Wounded Knee faunas of southwestern South Dakota. Bulletin of the Los Angeles County Museum of Natural History 8: 165–182.Google Scholar
  45. Marivaux, L., M. Vianey-Liaud, and J.-J. Jaeger. 2004. High level phylogeny of early tertiary rodents. Zoological Journal of the Linnean Society 142: 105–134.CrossRefGoogle Scholar
  46. Marsh, O.C. 1877. Notive of some new vertebrate fossils. American Journal of Science 15: 249–256.Google Scholar
  47. Matthew, W.D. 1903. The fauna of the Titanotherium beds at Pipestone Springs, Montana. Bulletin of the American Museum of Natural History 19: 197–226.Google Scholar
  48. Mellett, J.S. 1968. The Oligocene Hsanda Gol Formation, Mongolia: A revised faunal list. American Museum Novitates 2318: 1-16.Google Scholar
  49. Meng, J., and A.R. Wyss. 2001. The morphology of tribosphenomys (Rodentiaformes, mammalian): Phylogenetic implications for basal glires. Journal of Mammalian Evolution 8(1): 1–71.CrossRefGoogle Scholar
  50. Miller, G.S., and J.W. Gidley. 1918. Synopsis of the supergeneric groups of rodents. Journal of the Washington Academy of Sciences 8: 431–448.Google Scholar
  51. Qiu, Z. 1987. The aragonian vertebrate fauna of Xiacaowan, Jiangsu—7, Aplodontidae (Rodentia, Mammalia). Vertebrata PalAsiatica 25: 293–296.Google Scholar
  52. Qiu, Z., and B. Sun. 1988. New fossil micromammals from Shanwang, Shandong. Vertebrata PalAsiatica 26: 50–58.Google Scholar
  53. Rensberger, J.M. 1975. Haplomys and its bearing on the origin of the aplodontoid rodents. Journal of Mammalogy 56: 1–14.CrossRefGoogle Scholar
  54. Rensberger, J.M. 1981. Evolution in a late Oligocene-early Miocene succession of meniscomyine rodents in the deep river formation, Montana. Journal of Vertebrate Paleontology 1: 185–209.CrossRefGoogle Scholar
  55. Rensberger, J.M. 1983. Successions of meniscomyine and allomyine rodents (Aplodontidae) in the Oligo-Miocene John Day Formation Oregon. University of California Press, Publications in Geological Sciences 124: 1–157.Google Scholar
  56. Rensberger, J.M., and C.K. Li. 1986. A new prosciurine rodent from Shantung Province, China. Journal of Paleontology 60: 763–771.Google Scholar
  57. Russell, D.E., and R. Zhaï. 1987. The Paleogene of Asia: Mammals and stratigraphy. Mémoires du Muséum national d’Histoire Naturelle, Paris 52: 1–488.Google Scholar
  58. Schlosser, M. 1884. Die Nager des Europäischen Tertiärs nebst Betrachtungen über die Organisation und die geschichtliche Entwicklung der Näger überhaupt. Palaeontographica 31: 323–328.Google Scholar
  59. Schmidt-Kittler, N., and M. Vianey-Liaud. 1979. Evolution des Aplodontidae oligocènes européens. Palaeovertebrata, Montpellier 9: 33–82.Google Scholar
  60. Schmidt-Kittler, N., Vianey-Liaud, M., and L. Marivaux. 2007. The Ctenodactylidae (Rodentia, Mammalia) in Oligocene-Miocene Vertebrates from the Valley of Lakes (Central Mongolia): Morphology, phylogenetic and stratigraphic implications, part 6. Annalen des Naturhistorisches Museum in Wien 108A:173–215.Google Scholar
  61. Setoguchi, T. 1978. Paleontology and geology of the Badwater Creek area, central Wyoming. Part 16. The Cedar Ridge local fauna (late Oligocene). Bulletin of Carnegie Museum of Natural History 9:1–61.Google Scholar
  62. Shevyreva, N. S. 1966. On the evolution of rodents from Middle Oligocene of Kazakhstan, BuIletin Mosk. Ohshch. Ispyt. Prirody, Otded Geologitche 41:143.Google Scholar
  63. Shevyreva, N.S. 1971. New Rodents from the Middle Oligocene of Kazakhstan and Mongolia. Akademiya Nauk SSSR, Paleontologicheskii Institut (in Russian) 130: 70–86.Google Scholar
  64. Shotwell, J.A. 1958. Evolution and biogeography of the aplodontids and mylagaulids rodents. Evolution 12: 451–484.CrossRefGoogle Scholar
  65. Stehlin, H.G., and S. Schaub. 1951. Die Trigonodontie der simplicidentaten Nager. Schweizerische Palaeontologische Abhandlungen 67: 1–385.Google Scholar
  66. Storer, J.E. 1988. The rodents of the Lac Pelletier lower fauna, late Eocene (Duchesnean). Journal of Vertebrate Paleontology 8: 84–101.CrossRefGoogle Scholar
  67. Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony. (*and other methods). Version 4. Sinauer Associates, Sunderland. Massachusetts.Google Scholar
  68. Tedrow, A.R., and W.W. Korth. 1997. New aplodontidae Rodents (Mammalia) from the Oligocene (Prellan and Whitneyan) of Slim Buttes, South Dakota. Paludicola 1: 80–90.Google Scholar
  69. Trouessart, E.L. 1897. Catalogus Mammalium tam viventum quam fossilium. Nova editio, Part 2, Berlin: R. Friedländer und Sohn, 219–452.Google Scholar
  70. Vianey-Liaud, M. 1974. Palaeosciurus goti nov. sp., écureuil terrestre de l’Oligocène moyen du Quercy. Données nouvelles sur l’apparition des Sciuridae en Europe. Annales de Paléontologie, Paris 60: 103–122.Google Scholar
  71. Vianey-Liaud, M. 1985. Possible evolutionary relationships among Eocene and lower Oligocene rodents of Asia, Europe and North America. In Evolutionary relationships among rodents: a multidisciplinary analysis, ed. W.P. Luckett, and J.L. Hartenberg, 277–309. New York and London: Plenum Press.Google Scholar
  72. Vianey-Liaud, M., N. Schmidt-Kittler, and L. Marivaux. 2006. The Tataromyinae (Ctenodactylidae, Rodentia) from the Oligocene of Ulantatal (Inner Mongolia, China). Palaeovertebrata Montpellier 34: 111–206.Google Scholar
  73. Vianey-Liaud, M., and B. Schmid. 2009. Diversité, Datation et Paléoenvironnement de la faune de mammifères Oligocène de Cavalé (Quercy, SW France): Contribution de l’analyse morphométrique des Theridomyinae (Mammalia, Rodentia). Mémoire Jubilaire L. de Bonis, Géodiversitas 31: 223–255.Google Scholar
  74. Wang, B. 1987. Discovery of Aplodontidae (Rodentia, Mammalia) from Middle Oligocene of Nei Mongol, China. Vertebrata PalAsiatica 25: 32–45.Google Scholar
  75. Wang, B., and K. Heissig. 1984. Ephemeromys n. gen., a primitive prosciurine rodent from the Oligocene of Southern Germany. Mitteilungen des Bayerischen Staatssammlung für Paläontologie und Historische Geologie 24: 105–119.Google Scholar
  76. Wang, B., and Z.X. Qiu. 2004. Discovery of early Oligocene Mammalian fossils from Danghe area, Gansu, China. Vertebrata PalAsiatica 42: 130–143.Google Scholar
  77. Wang, B., and D. Dashzeveg. 2005. New Oligocene sciurids and aplodontids (Rodentia, Mammalia) from Mongolia. Vertebrata PalAsiatica 43: 85–99.Google Scholar
  78. Watrous, J.E., and Q.D. Wheeler. 1981. The outgroup comparison method of character analysis. Systematic Zoology 30: 1–11.CrossRefGoogle Scholar
  79. Wilson, R.W. 1949. Early tertiary rodents of North America. Carnegie Institute of Washington Publication 584: 67–164.Google Scholar
  80. Wood, A.E. 1937. The mammalian fauna of the White River Oligocene. Part. II. Rodentia. Transactions of the American Philosophical Society 28: 155–269.CrossRefGoogle Scholar
  81. Wood, A.E. 1980. The Oligocene rodents of North America. Transactions of the American Philosophical Society 70: 1–68.Google Scholar
  82. Wood, A.E., and R.W. Wilson. 1936. A suggested nomenclature for the cusps of the cheek teeth of rodents. Journal of Paleontology 10: 388–391.Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Monique Vianey-Liaud
    • 1
  • Helder Gomes Rodrigues
    • 1
    • 2
  • Laurent Marivaux
    • 1
  1. 1.Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR-CNRS 5554), Case Courrier 064Université Montpellier 2Montpellier Cedex 5France
  2. 2.Team “Evo-Devo of Vertebrate Dentition”, Institut de Génomique Fonctionnelle de LyonUniversité de Lyon, UMR 5242 CNRS UCBL1 ENS, Ecole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations