Paläontologische Zeitschrift

, Volume 86, Issue 3, pp 333–343 | Cite as

A tiny stem group representative of Pici (Aves, Piciformes) from the early Oligocene of the Czech Republic

Research Paper

Abstract

We describe a new stem group representative of Pici (woodpeckers, honeyguides, barbets, and allies) from the early Oligocene (Rupelian) of the Czech Republic. The holotype of Picavus litencicensis, gen. et sp. nov. is a postcranial skeleton with well-preserved feather remains. The new species is distinguished from crown group Pici in several plesiomorphic features and is assigned to the new taxon Picavidae, fam. nov. The absence of an elongated accessory trochlea for the reversed fourth toe shows P. litencicensis to be the most basal representative of Pici, and concerning the morphology of the distal tarsometatarsus the species represents a morphological link between Pici and their sister taxon, the Galbulae. Like all other early Oligocene piciform birds, P. litencicensis is a tiny bird, the size of the smallest extant Pici. Because all Palaeogene Pici were found in Europe and some of these are outside the crown group, an Old World origin of Pici is likely. With definitive crown group representatives of Pici being unknown before the late Oligocene/early Miocene, the fossil record does not support earlier molecular calibrations, which resulted in a late Cretaceous divergence of crown group Pici.

Keywords

Fossil birds Rupelian Menilite Formation Picavidae, fam. nov. Picavus litencicensis, gen. et sp. nov 

Kurzfassung

Wir beschreiben einen neuen Stammgruppen-Vertreter der Pici (Spechte, Honiganzeiger, Bartvögel und Verwandte) aus dem unteren Oligozän (Rupelium) der Tschechischen Republik. Der Holotypus von Picavus litencicensis, gen. et sp. nov. ist ein postcraniales Skelett mit sehr gut erhaltener Befiederung. Die neue Art unterscheidet sich in mehreren plesiomorphen Merkmale von Kronengruppen-Pici und wird dem neuen Taxon Picavidae, fam. nov. zugeordnet. Das Fehlen einer verlängerten zusätzlichen Trochlea für die zurückgedrehte vierte Zehe weist P. litencicensis als basalen Vertreter der Pici aus, und bezüglich der Morphologie des distalen Tarsometatarsus stellt die neue Art eine morphologische Übergangsform zwischen Pici und ihrem Schwestertaxon, den Galbulae, dar. Wie alle anderen unteroligozänen piciformen Vögel ist P. litencicensis ein winziger Vogel, von der Größe der kleinsten heutigen Pici. Weil alle paläogenen Pici in Europa gefunden wurden und weil einige von diesen außerhalb der Kronengruppe sind, ist ein altweltlicher Ursprung der Pici wahrscheinlich. Da es keine definitiven Kronengruppen-Vertreter der Pici aus Ablagerungen vor dem späten Oligozän/frühen Miozän gibt, stützt der Fossilbericht keine Aufspaltung der Kronengruppen-Pici in der späten Kreidezeit, welche aus früheren molekularen Kalibrierungen resultierte.

Schlüsselwörter

Fossile Vögel Rupel Menilit-Formation Picavidae, fam. nov. Picavus litencicensis, gen. et sp. nov 

References

  1. Ashton, K.G. 2002. Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Global Ecology and Biogeography 11: 505–523.CrossRefGoogle Scholar
  2. Ballmann, P. 1969. Die Vögel aus der altburdigalen Spaltenfüllung von Wintershof (West) bei Eichstätt in Bayern. Zitteliana 1: 5–60.Google Scholar
  3. Baumel, J.J., and L.M. Witmer. 1993. Osteologia. In Handbook of avian anatomy: Nomina anatomica avium, vol. 23, ed. J.J. Baumel, A.S. King, J.E. Breazile, H.E. Evans, and J.C. Vanden Berge, 45–132. Cambridge: Publications of the Nuttall Ornithological Club.Google Scholar
  4. Bocheński, Z., and Z.M. Bocheński. 2008. An Old World hummingbird from the Oligocene: a new fossil from Polish Carpathians. Journal of Ornithology 149: 211–216.CrossRefGoogle Scholar
  5. Bocheński, Z.M., T. Tomek, and E. Świdnicka. 2010. A columbid-like avian foot from the Oligocene of Poland. Acta Ornithologica 45: 233–236.CrossRefGoogle Scholar
  6. Bocheński, Z.M., T. Tomek, M. Bujoczek, and K. Wertz. 2011. A new passerine bird from the early Oligocene of Poland. Journal of Ornithology 152: 1045–1053.CrossRefGoogle Scholar
  7. Boué, A. 1829. Geognostische Gemälde von Deutschland. Leonhardt: Frankfurt a M.Google Scholar
  8. Bubík, M., R. Gregorová, and L. Švábenická. 2006. Mikropaleontologie a rybí fauna podrohovcových vrstev u Litenčic. Geologické výzkumy na Moravě a ve Slezsku v roce 2005: 30–31.Google Scholar
  9. Chandler, R.M. 1999. Fossil birds of Florissant, Colorado: With a description of a new genus and species of cuckoo. In National park service paleontological research, vol. 4, Geologic Resources Division Technical Report NPS/NRGRD/GRDTR-99, ed. V.L. Santucci, and L. McClelland, 49–53. Lakewood, CO: Geological Resources Division.Google Scholar
  10. De Pietri, V.L., A. Manegold, L. Costeur, and G. Mayr. 2011. A new species of woodpecker (Aves; Picidae) from the early Miocene of Saulcet (Allier, France). Swiss Journal of Palaeontology 130: 307–314.CrossRefGoogle Scholar
  11. del Hoyo, J., A. Elliott, and J. Sargatal (eds.). 2002. Handbook of the Birds of the World, vol. 7. Jacamars to Woodpeckers. Barcelona: Lynx Edicions.Google Scholar
  12. Ericson, P.G.P., C.L. Anderson, T. Britton, A. Elzanowski, U.S. Johansson, M. Källersjö, J.I. Ohlson, T.J. Parsons, D. Zuccon, and G. Mayr. 2006. Diversification of Neoaves: Integration of molecular sequence data and fossils. Biology Letters 2: 543–547.CrossRefGoogle Scholar
  13. Fuchs, J., J.I. Ohlson, P.G.P. Ericson, and E. Pasquet. 2007. Synchronous intercontinental splits between assemblages of woodpeckers suggested by molecular data. Zoologica Scripta 36: 11–25.CrossRefGoogle Scholar
  14. Fulín, M., and P. Holec. 2008. Nález vtáčej nohy (Aves) v paleogénnych sedimentoch lokality Bystré nas Topl’ou [Discovery of a bird leg (Aves) in Paleogene sediments at Bystré nas Topl’ou locality]. Mineralia Slovaca 40: 183–184.Google Scholar
  15. Gregorová, R. 1988. Rybí fauna menilitového souvrství na lokalitě Litenčice a její stratigrafická pozice. Acta Musei Moraviae, Scientiae naturales 73: 83–88.Google Scholar
  16. Gregorová, R. 2006. A new discovery of a seabird (Aves: Procellariiformes) in the Oligocene of the “Menilitic Formation” in Moravia (Czech Republic). Hantkeniana 5: 90.Google Scholar
  17. Gregorová, R. 2011. Fossil fish fauna (Teleostei, Selachii) from the Dynów marlstone (Rupelian, NP 23) of the Menilitic Formation at the locality of Litenčice (Czech Republic). Acta Musei Moraviae, Scientiae geologicae 95: 3–33.Google Scholar
  18. Gregorová, R., and M. Mlynarski. 1993. Premiere découverte de Glarichelys knorri (Gray), tortue marine (Cheloniidae) dans l’Oligocene des couches a ménilite de Moravie (Tchécoslovaquie). Acta Musei Moraviae, Scientiae naturales 77: 63–69.Google Scholar
  19. Hackett, S.J., R.T. Kimball, S. Reddy, R.C.K. Bowie, E.L. Braun, M.J. Braun, J.L. Chojnowski, W.A. Cox, K.-L. Han, J. Harshman, C.J. Huddleston, B.D. Marks, K.J. Miglia, W.S. Moore, F.H. Sheldon, D.W. Steadman, C.C. Witt, and T. Yuri. 2008. A phylogenomic study of birds reveals their evolutionary history. Science 320: 1763–1767.CrossRefGoogle Scholar
  20. Kalabis, V. 1950. Nové paleontologické nálezy v moravském paleogénu. Přírodovědecký sborník ostravského kraje 21: 322–324.Google Scholar
  21. Krhovský, J., F. Roegl, and B. Hamršmíd. 2001. Stratigraphic correlation of the Late Eocene to Early Miocene of the Waschberg Unit (Lower Austria) with the Ždánice and Pouzdřany Units (South Moravia). In Paleogene of the eastern alps, ed. W.E. Piller, and M.W. Rasser, 227–250. Wien: Osterreichische Akademie der Wissenschaften.Google Scholar
  22. Mayr, G. 1998. “Coraciiforme” und “piciforme” Kleinvögel aus dem Mittel-Eozän der Grube Messel (Hessen, Deutschland). Courier Forschungsinstitut Senckenberg 205: 1–101.Google Scholar
  23. Mayr, G. 2001. The earliest fossil record of a modern-type piciform bird from the late Oligocene of Germany. Journal für Ornithologie 142: 2–6.Google Scholar
  24. Mayr, G. 2005. A tiny barbet-like bird from the Lower Oligocene of Germany: The smallest species and earliest substantial fossil record of the Pici (woodpeckers and allies). Auk 122: 1055–1063.CrossRefGoogle Scholar
  25. Mayr, G. 2006a. First fossil skull of a Paleogene representative of the Pici (woodpeckers and allies) and its evolutionary implications. Ibis 148: 824–827.CrossRefGoogle Scholar
  26. Mayr, G. 2006b. New specimens of the Eocene Messelirrisoridae (Aves: Bucerotes), with comments on the preservation of uropygial gland waxes in fossil birds from Messel and the phylogenetic affinities of Bucerotes. Paläontologische Zeitschrift 80: 390–405.Google Scholar
  27. Mayr, G. 2006c. A specimen of Eocuculus Chandler, 1999 (Aves, ?Cuculidae) from the early Oligocene of France. Geobios 39: 865–872.CrossRefGoogle Scholar
  28. Mayr, G. 2008. Phylogenetic affinities of the enigmatic avian taxon Zygodactylus based on new material from the early Oligocene of France. Journal of Systematic Palaeontology 6: 333–344.CrossRefGoogle Scholar
  29. Mayr, G. 2009. Paleogene fossil birds. Heidelberg: Springer.CrossRefGoogle Scholar
  30. Mayr, G., A. Manegold, and U. Johansson. 2003. Monophyletic groups within “higher land birds”—comparison of morphological and molecular data. Journal of Zoological Systematics and Evolutionary Research 41: 233–248.CrossRefGoogle Scholar
  31. Mayr, G., and R. Smith. 2001. Ducks, rails, and limicoline waders (Aves: Anseriformes, Gruiformes, Charadriiformes) from the lowermost Oligocene of Belgium. Geobios 34: 547–561.CrossRefGoogle Scholar
  32. Mosbrugger, V., T. Utescher, and D.L. Dilcher. 2005. Cenozoic continental climatic evolution of central Europe. Proceedings of the National Academy of Sciences USA 102: 14964–14969.CrossRefGoogle Scholar
  33. Moyle, R.G. 2004. Phylogenetics of barbets (Aves: Piciformes) based on nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 30: 187–200.CrossRefGoogle Scholar
  34. Nahum, L.A., S.L. Pereira, F.M. de Campos Fernandes, S.R. Matioli, and A. Wajntal. 2003. Diversification of Ramphastinae (Aves, Ramphastidae) prior to the Cretaceous/Tertiary boundary as shown by molecular clock of mtDNA sequences. Genetics and Molecular Biology 26: 411–418.CrossRefGoogle Scholar
  35. Olson, S.L. 1985. The fossil record of birds. In Avian biology, vol. 8, ed. D.S. Farner, J.R. King, and K.C. Parkes, 79–238. New York: Academic Press.Google Scholar
  36. Simpson, S.F., and J. Cracraft. 1981. The phylogenetic relationships of the Piciformes (Class Aves). Auk 98: 481–494.Google Scholar
  37. Steinbacher, G. 1935. Funktionell-anatomische Untersuchungen an Vogelfüßen mit Wendezehen und Rückzehen. Journal für Ornithologie 83: 214–282.CrossRefGoogle Scholar
  38. Švábenická, L., M. Bubík, and Z. Stráník. 2007. Biostratigraphy and paleoenvironmental changes on the transition from the Menilite to Krosno lithofacies (Western Carpathians, Czech republic). Geologica Carpathica 58: 237–262.Google Scholar
  39. Vinther, J., D.E.G. Briggs, R.O. Prum, and V. Saranathan. 2008. The color of fossil feathers. Biology Letters 4: 522–525.CrossRefGoogle Scholar
  40. Vinther, J., D.E.G. Briggs, J. Clarke, G. Mayr, and R.O. Prum. 2010. Structural coloration in a fossil feather. Biology Letters 6: 128–131.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Sektion OrnithologieForschungsinstitut SenckenbergFrankfurt am MainGermany
  2. 2.Department of Geology and PaleontologyMoravian MuseumBrnoCzech Republic

Personalised recommendations