Advertisement

Paläontologische Zeitschrift

, Volume 86, Issue 4, pp 409–439 | Cite as

A partial skeleton of Geotrypus antiquus (Talpidae, Mammalia) from the Late Oligocene of the Enspel fossillagerstätte in Germany

  • Achim H. SchwermannEmail author
  • Thomas Martin
Research Paper

Abstract

The partial skeleton of a young adult Geotrypus antiquus (de Blainville 1840) from the Upper Oligocene (MP 28) found in Enspel comprises the skull with both mandibles, distal ends of both scapulae, left clavicula, humeri, ulnae and radii of both sides, various elements of the hand, some vertebrae, ribs, and the left femur. For the first time, the previously postulated association between dentition and postcranial elements can be confirmed. The skeleton exhibits strong adaptations for a subterranean life, similar to modern fossorial moles. The humerus is wide with a large pectoral process. The wing-like greater and lesser tuberosities, teres tubercle, and distal epicondylus are clearly developed. The metacarpals and phalanges are broad and stout. There are several sesamoid bones in the broad digging hand, including a prepollex (os falciforme). The preserved bones allowed the forelimb of G. antiquus to be reconstructed. Previous finds of G. antiquus have mainly been from France, with a few specimens from Switzerland and southern Germany. The specimen from Enspel is the northernmost record. A cladistic analysis, based on the matrix of Sánchez-Villagra et al. (Cladistics 22:59–88, 2006), confirms the basal position of Geotrypus within the Old World moles (Talpini).

Keywords

Talpidae Partial skeleton Geotrypus Oligocene Enspel Germany Fossorial adaptation Phylogenetic analysis 

Kurzfassung

Das Teilskelett eines jung-adulten Geotrypus antiquus (de Blainville 1840) aus dem Oberoligozän (MP 28) von Enspel umfasst den Schädel mit Unterkiefern, die distalen Enden der Scapulae, die linke Clavicula, sowie die Humeri, Ulnae und Radii beider Seiten, zahlreiche Elemente der Hand, mehrere Wirbel, Rippen und das linke Femur. Da hier erstmalig Gebiss und Humeri eines Individuums assoziiert überliefert sind, kann deren schon früher postulierte Zusammengehörigkeit bestätigt werden. Das Skelett zeigt starke Anpassungen an die subterrane Lebensweise, ähnlich den heutigen fossorialen Maulwürfen. Der Humerus ist breit und hat einen großen Processus pectoralis. Die flügelartigen Tuberositas major und T. minor, Teres major und die distalen Epicondyli sind stark entwickelt. Metacarpalia und Phalangen sind verbreitert und auffallend verkürzt. Die breite Grabhand wird durch zusätzliche Sesamknochen verstärkt, dazu gehört auch ein Präpollex (Os falciforme). Die überlieferten Knochen erlaubten die Rekonstruktion der Vorderextremität von G. antiquus. Die bisherigen Funde von G. antiquus stammen hauptsächlich aus Frankreich, wenige sind auch aus der Schweiz und aus Süddeutschland bekannt. Der Fund aus Enspel stellt damit den nördlichsten Nachweis dar. Eine kladistische Analyse auf der Basis der Datenmatrix von Sánchez-Villagra et al. (Cladistics 22:59–88, 2006) bestätigt die basale Stellung der Gattung Geotrypus innerhalb der Altweltmaulwürfe (Talpini).

Schlüsselwörter

Talpidae Teilskelett Geotrypus Oligozän Enspel Deutschland Grabanpassung Phylogenetische Analyse 

Notes

Acknowledgments

We thank Dr. Michael Wuttke at the Generaldirektion Kulturelles Erbe Rheinland-Pfalz in Mainz for providing the fossil specimen and for information on the excavation and locality. Dr. Irina Ruf, Dr. Julia Schultz, and Peter Göddertz helped with the micro-CT analysis. We thank Georg Oleschinski for the photos of the specimen. Furthermore, for their discussions and helpful suggestions, we thank Dr. Lars van den Hoek Ostende (National Museum of Natural History Naturalis, Leiden) and Dr. Reinhard Ziegler (Staatliches Museum für Naturkunde Stuttgart). We also express special thanks to Jessica Mitchell for her linguistic corrections of the manuscript.

References

  1. Abe, H., S. Shiraishi, and S. Arai. 1991. A new mole from Uotsuri-jima, the Ryukyu Islands. Journal of the Mammalogical Society of Japan 15: 47–60.Google Scholar
  2. Aguilar, J.-P. 1982. Biozonation du Miocène d’Europe occidentale à l’aide des Rongeurs et corrélations avec l’échelle stratigraphique marine. Comptes rendus de l’Académie des Sciences 294: 49–54.Google Scholar
  3. Böhme, M. 1996. Revision der oligozänen und untermiozänen Vertreter der Gattung Palaeoleuciscus Obrhelova, 1969 (Teleostei, Cyprinidae) in Mitteleuropa. Dissertation, Universität Leipzig.Google Scholar
  4. Barnosky, A.D. 1981. A skeleton of Mesoscalops (Mammalia, Insectivora) from the Miocene Deep River Formation, Montana, and a review of the proscalopid moles: evolutionary, functional, and stratigraphic relationships. Journal of Vertebrate Paleontology 56: 1103–1111.Google Scholar
  5. Bruijn, H. de, and C.G. Rümke. 1974. On a peculiar mammalian association from the Miocene of Oschiri (Sardinia). I and II. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B77: 44–79.Google Scholar
  6. Cabrera, A. 1925. Genera Mammalium, vol. 2. Insectivora. Madrid: Galeopithecia (Museo Nacional de Ciencias Naturales).Google Scholar
  7. Campbell, B. 1939. The shoulder anatomy of the moles. A study in phylogeny and adaption. American Journal of Anatomy 64: 1–39.CrossRefGoogle Scholar
  8. Corbet., G.B., and J.E. Hill. 1992. The mammals of the Indomalayan region. Oxford: Oxford University Press.Google Scholar
  9. Crochet, J.-Y. 1974. Les insectivores des phosphorites du Quercy. Palaeovertebrata 6: 109–159.Google Scholar
  10. Crochet, J.-Y. 1995. Le Garouillas et les sites contemporains (Oligocène, MP 25) des Phosphorites du Quercy (Lot, Tarn-et- Garonne, France) et leurs faunes de vertébrés—4. Marsupiaux et Insectivores. Palaeontographica A 236: 39–75.Google Scholar
  11. de Blainville, H.M.D. 1840. Osteographie des mammifères insectivores (Talpa, Sorex et Erinaceus L.). In Osteographie des mammifères (1). pp. 1–115. Paris: Baillère.Google Scholar
  12. Dannelid, E. 1998. Dental adaptations in shrews. In Evolution of shrews, ed. Wojcik, J.M. and M. Wolsan. Bialowieza.Google Scholar
  13. Edwards, L.F. 1937. Morphology of the fore-limb of the mole (Scalops aquaticus, L.) in relation to its fossorial habits. The Ohio journal of science 37: 20–41.Google Scholar
  14. Ellerman, J.R., and T.C.S. Morrison-Scott. 1966. Checklist of palaeoarctic and Indian mammals, 2nd ed. 1758–1946. Oxford: Alden Press.Google Scholar
  15. Fens, R. 1988. Insektenesser. In Grizmeks Tierleben. Säugetiere, vol. I. München: Kindler. Google Scholar
  16. Fischer, G. 1813–1814. Zoognosia tabulis synopticis illustrata. Moscow: Nicolai Sergeidis Vsevolozsky.Google Scholar
  17. Frost, D.R., W.C. Wozencraft, and R.S. Hoffmann. 1991. Phylogenetic relationships of hedgehogs and gymnures (Mammalia: Insectivora: Erinceidae). Smithsonian contributions to zoology 518: 1–69.Google Scholar
  18. Gaughran, G.R.L. 1954. A comparative study of the osteology and myology of the cranial and cervical regions of the shrew, Blarina brevicauda, and the mole, Scalopus aquaticus. Miscellaneous publications/Museum of Zoology, University of Michigan 80: 1–82.Google Scholar
  19. Geisler, J.H. 2004. Humeri of Oligoscalops (Proscalopidae, Mammalia) from the Oligocene of Mongolia. In Tributes to Malcolm C. Mckenna: His Students, His Legacy, ed. Gould, G.C., and S.K. Bell. Bulletin of the American Museum of Natural History 285: 166–176.Google Scholar
  20. Gould, G.C. 2001. The phylogenetic resolving power of discrete dental morphology among extant hedgehogs and the implications for their fossil record. American Museum novitates 3340: 1–52.Google Scholar
  21. Gregory, W.K. 1910. The orders of mammals. Bulletin of the American Museum of Natural History 37: 1–524.Google Scholar
  22. Großmann, M., M.R. Sánchez-Villagra, and W. Maier. 2002. On the development of the shoulder girdle in Crocidura russula (Soricidae) and other placental mammals: evolutionary and functional aspects. Journal of anatomy 201: 371–381.Google Scholar
  23. Hartman, G.D., and T.L. Yates. 1985. Scapanus orarius. Mammalian Species 253: 1–5. Google Scholar
  24. Hermann, J. 1780. In Geographische Geschichte des Menschen, und der allgemein verbreiteten vierfüßigen Thiere, nebst einer hierzu gehörigen zoologischen Weltcharte. vol. 2. Geschichte des Menschen, und der vierfüßigen Thiere, ed. von Zimmermann, E.A.W. p. 6. Leipzig: Weygandsche Buchhandlung.Google Scholar
  25. Horovitz, L. 2004. Eutherian mammal systematics and the origins of South American ungulates. In Fanfare for an Uncommon Vertebrate Paleontologist: Papers on Vertebrate Evolution in Honor of Malcolm Carnegie McKenna, ed. Dawson, M., and J. Lillegraven. Bulletin of Carnegie Museum of Natural History 36: 63–79.Google Scholar
  26. Horovitz, L., and M.R. Sanchez-Villagra. 2003. A comprehensive analysis of marsupial higher-level relationships. Cladistics 19: 181–212.Google Scholar
  27. Hugueney, M. 1972. Les talpidés (Mammalia, Insectivora) de Coderet-Bransat (Allier) et l’evolution de cette famille au cours de l’Oligocéne supérieur et du Miocéne inférieur d’Europe. Documents des laboratoires de géologie de la Faculté des Sciences de Lyon 50: 1–81.Google Scholar
  28. Hutchison, J.H. 1968. Fossil Talpidae (Insectivora, Mammalia) from the later Tertiary of Oregon. Bulletin of the Museum of Natural History 11: 1–117.Google Scholar
  29. Hutchison, J.H. 1974. Notes on type specimens of European Miocene Talpidae and a tentative classification of Old World Tertiary Talpidae (Insectivora: Mammalia). Geobios 7: 211–256.CrossRefGoogle Scholar
  30. Hutchison, J.H. 1976. The Talpidae (Insectivore, Mammalia): evolution, phylogeny, and classification. PhD Thesis, University of California, Berkeley.Google Scholar
  31. Hutterer, R. 1985. Anatomical adaptations on shrews. Mammalian Review 15: 43–55.Google Scholar
  32. Hutterer, R. 2005. Order Soricomorpa. In Mammal species of the world. A taxonomic and geographic reference (1), 3rd ed. Don E. Wilson and DeeAnn M. Reeder, 220–231. Baltimore: Johns Hopkins University Press.Google Scholar
  33. Imaizumi, Y. 1960. Coloured illustrations of the mammals of Japan [in Japanese]. Osaka: Hoikusha. Google Scholar
  34. Imaizumi, Y. 1970. The handbook of Japanese land mammals, vol. I. Tokyo: Shin-Schicho-Sha.Google Scholar
  35. Imaizumi, Y., and K. Kubota. 1978. Numerical identification of teeth in Japanese shrew-moles, Urotrichus talpoides and Dymecodon pilirostris. Bulletin of the Tokyo Medical and Dental University 25: 91–99.Google Scholar
  36. Jones, J.K., and R.W. Manning. 1992. Illustrated key to skulls of genera of north American land mammals. Lubbock: Texas Tech University Press.Google Scholar
  37. Jullien, R. 1967. Musculature du member anterieur chez les principaux types d'Insectivores. Mémoires du Muséum national d'Histoire naturelle 48: 1–68.Google Scholar
  38. Kindahl, M. 1957. Notes on the tooth development in Talpa europaea. Arkiv för Zoologi 11: 187–191.Google Scholar
  39. Klima, M. 1987. Early development of the shoulder girdle and sternum in marsupials (Mammalia: Metatheria). Advances in anatomy, embryology and cell biology 109: 1–91.Google Scholar
  40. Koenigswald, W.V., and M. Wuttke. 1987. Zur Taphonomie eines unvollständigen Skelettes von Leptictidium nasutum aus dem Ölschiefer von Messel. Geologisches Jahrbuch Hessen 115: 65–79.Google Scholar
  41. Koppers, D. 1990. Vergleichende anatomisch-systematische Untersuchungen an Schädeln von Talpa europaea und anderen Insectivoren. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere 120: 109–125.Google Scholar
  42. Lavocat, R. 1951. Révision de la faune des mammiféres oligocénes d’Auvergne et du Velay. Paris: Sciences et Avenir.Google Scholar
  43. Leche, J.W.E.G. 1883. Zur Anatomie der Beckenregion bei Insectivora, mit besonderer Berücksichtigung ihrer morphologischen Beziehungen zur derjenigen anderer Säugethiere. Kunglig Svenska vetenskaps-akademien Handlingar 20: 1–113.Google Scholar
  44. Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th ed, vol. 1. Stockholm: Laurentii Salvii.Google Scholar
  45. MacPhee, R.D.E., and M.J. Novacek. 1993. Definition and relationships of Lipotyphla. In Mammal Phylogeny. Placentals, ed. Szalay, F.S., M.J. Novacek, and M.C. McKenna. New York: Springer-Verlag.Google Scholar
  46. Mayr, G., M. Poschmann, and M. Wuttke. 2006. A nearly complete skeleton of the fossil galliform bird Palaeortyx from the late Oligocene of Germany. Acta Ornithologica 41: 129–135.Google Scholar
  47. McDowell, S.B. 1958. The greater antilles insectivores. Bulletin of the American Museum of Natural History 115: 113–214.Google Scholar
  48. Mertz, D.F., P.R. Renne, M. Wuttke, and C. Mödden. 2007. A numerically calibrated reference level (MP28) for the terrestrial mammal-based biozonation of the European Upper Oligocene. International Journal of Earth Science 96: 353–361.CrossRefGoogle Scholar
  49. Mickoleit, G. 2004. Phylogenetische Systematik der Wirbeltiere. München: Pfeil Verlag.Google Scholar
  50. Mitgutsch, C., M.K. Richardson, J. Rafael, J.E. Martin, P. Kondrashov, M.A.G. de Bakker, and M.R. Sánchez-Villagra. 2011. Circumventing the polydactyly ‘constraint’: the mole’s ‘thumb’. Biology Letters 8: 74–77. doi: 10.1098/rsbl.2011.0494.Google Scholar
  51. Mörs, T., and D. Kalthoff. 2010. A new species of Amphilagus (Mammalia: Lagomorpha) from the Late Oligocene lake deposits of Enspel (Westerwald, Germany). Palaeobiodiversity and Palaeoenvironments 90: 83–98.CrossRefGoogle Scholar
  52. Mörs, T., and W.V. Koenigswald. 2000. Potamotherium valletoni (Carnivora, Mammalia) aus dem Oberoligozän von Enspel im Westerwald. Senckenbergiana Lethaea 80: 257–273.CrossRefGoogle Scholar
  53. Moore, D.W. 1986. Systematic and biogeographic relationships among the Talpinae (Insectivora: Talpidae). PhD dissertation, University New Mexico, Alburquerque.Google Scholar
  54. Motokawa, M. 2004. Phylogenetic relationships within the family Talpidae (Mammalia: Insectivora). Journal of Zoology London 263: 147–157.CrossRefGoogle Scholar
  55. Nowak, R.M. 1999. Walker's mammals of the world, 6th edn. Baltimore: John Hopkins University Press.Google Scholar
  56. Ognev, S.I. 1962. Mammals of Eastern Europe and Northern Asia. Insectivora and Chiroptera, vol. 1. Jerusalem: Sivan Press.Google Scholar
  57. Parker, W.K. 1885. On the structure and development of the skull in the mammalia. Philosophical transactions of the Royal Society of London B176: 121–275.Google Scholar
  58. Pomel, A.N. 1848. Etude sur les carnassiers insectivores. Première parite. Insectivores fossiles. Archives des Sciences Physiques et Naturelles 9: 244–251.Google Scholar
  59. Poschmann, M., T. Schindler, and D. Uhl. 2010. Fossil-Lagerstätte Enspel—a short review of current knowledge, the fossil association, and a bibliography. Palaeobiodiversity and Palaeoenvironments 90: 3–20.Google Scholar
  60. Reed, C.A. 1951. Locomotion and appendicular anatomy in three soricoid insectivores. The American Midland Naturalist 45: 513–671.CrossRefGoogle Scholar
  61. Sánchez-Villagra, M.R., and S. Nummela. 2001. Bullate stapedes in some phalangeriform marsupials. Mammalian Biology 66: 174–177.Google Scholar
  62. Sánchez-Villagra, M.R., and P.R. Menke. 2005. The mole’s thumb—evolution of the hand skeleton in talpids (Mammalia). Zoology 108: 3–12.CrossRefGoogle Scholar
  63. Sánchez-Villagra, M.R., P.R. Menke, and J.H. Geisler. 2004. Patterns of evolutionary transformation in the humerus of moles (Talpidae, Mammalia): a character analysis. Mammal Study 29: 163–170.CrossRefGoogle Scholar
  64. Sánchez-Villagra, M.R., I. Horovitz, and M. Motokawa. 2006. A comprehensive morphological analysis of talpid moles (Mammalia) phylogenetic relationships. Cladistics 22: 59–88.CrossRefGoogle Scholar
  65. Say, T. 1823. Account of an expedition from Pittsburgh to the Rocky Mountains performed in the years 1819 and ’20, under the command of Major Stephen H. Long (compiled by Edwin James, 2 vols). Philadelphia: H.C. Carey and I. Lea.Google Scholar
  66. Sargis, E.J. 2002. Functional morphology of the forelimbs of Tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology 253: 10–42.Google Scholar
  67. Schaller, O. 2007. Illustrated veterinary anatomical nomenclature, 2nd ed. Stuttgart: Enke Verlag.Google Scholar
  68. Segall, W. 1970. Morphological parallelisms of the bulla and auditorr ossicles in some insectivores and marsupials. Fieldiana-Zoology memoirs 51: 169–205.Google Scholar
  69. Schindler, T., and M. Wuttke. 2010. Geology and limnology of the Enspel Formation (Chattian, Oligocene; Westerwald, Germany). Palaeobiodiversity and Palaeoenvironments 90: 21–27.Google Scholar
  70. Shinohara, A., K.L. Campbell, and H. Suzuki. 2003. Molecular phylogenetic relationships of moles, shrew moles and desmans from the New and Old Worlds. Molecular Phylogenetics and Evolution 27: 247–258.Google Scholar
  71. Shinohara, A., S. Kawada, M. Yasuda, and L.B. Liat. 2004. Phylogenetic position of the Malaysian mole, Euroscaptor micrura (Mammalia: Eulipotyphla), inferred from three gene sequences. Mammal Study 29: 185–189.CrossRefGoogle Scholar
  72. Skoczén, S. 1966. Age determination, age structure and sex ratio in mole, Talpa europaea Linnaeus, 1758 populations. Acta Theriologica 11: 523–536.Google Scholar
  73. Storch, G., and Z. Qiu. 1983. The Neogene mammalian faunas of Ertemte and Harr Obo in Inner Mongolia (Nei Mongol), China. 2. Moles-Insectivore: Talpidae. Senckenbergiana lethaea 64: 89–127.Google Scholar
  74. Storch, G., B. Engesser, and M. Wuttke. 1996. Oldest fossil record of gliding in rodents. Nature 379: 439–441.CrossRefGoogle Scholar
  75. Stroganov, S.U. 1945. Morphological characters of the auditory ossicles of recent Talpidae. Journal of Mammalogy 26: 412–420.Google Scholar
  76. Swofford, D.L. 2002. PAUP: phylogenetic analysis using parsimony, version 4.0 beta 10. Sunderland: Sinauer Associates.Google Scholar
  77. Thenius, E. 1989. Zähne und Gebiss der Säugetiere. Berlin: Walter De Gruyter.Google Scholar
  78. Tobien, H. 1939. Die Insektenfresser und Nagetiere aus der aquitanen Spaltenfüllung bei Tomerdingen (Ulmer Alb). Berichte der Naturforschenden Gesellschaft zu Freiburg i. Br 36: 159–180.Google Scholar
  79. True, F.W. 1896. A revision of the American moles. Proceedings of the United States National Museum 29: 1–115.Google Scholar
  80. Van den Hoek Ostende, L.W. 1989. The Talpidae (Insectivora, Mammalia) of Eggingen-Mittelhard (Baden-Württemberg, F.R.G.) with special reference to the Paratalpa-Desmanodon lineage. Stuttgarter Beiträge zur Naturkunde. 152: 1–29.Google Scholar
  81. Van den Hoek Ostende, L.W. 2001. Insectivore faunas from the Lower Miocene of Anatolia—part 5: Talpidae. Scripta Geologica 122: 1–45.Google Scholar
  82. Van den Hoek Ostende, L.W., and O. Fejfar. 2006. Erinaceidae and Talpidae (Erinaceomorpha, Soricomorpha, Mammalia) from the Lower Miocene of Merkur-Nord. Beiträge zur Paläontologie 30: 175–203.Google Scholar
  83. Van Valen, L., 1967. New Paleocene insectivores and insectivore classification. Bulletin of the American Museum of Natural History 135: 217–284.Google Scholar
  84. Walter, R. 2003. Erdgeschichte. Die Entstehung der Kontinente und Ozeane, 5th ed. Berlin: Walter De Gruyter.CrossRefGoogle Scholar
  85. Weigelt, J. 1927. Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung. Leipzig: Max Weg.Google Scholar
  86. Whidden, H.P. 2000. Comparative myology of moles and the phylogeny of the Talpidae (Mammalia, Lipotyphla). American Museum Novitates 3294: 1–53.Google Scholar
  87. Williams, S.H., and R.F. Kay. 2001. A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Journal of Mammalian Evolution 8: 207–229.Google Scholar
  88. Witte, G.R. 1997. Der Maulwurf. Magdeburg: Westarp Wissenschaften.Google Scholar
  89. Wuttke, M., D. Uhl, and T. Schindler. (eds.) 2010. The Fossil-Lagerstätte Enspel—exceptional preservation in an Upper Oligocene maar. Palaeobiodiversity and Palaeoenvironments 90: 1–98.Google Scholar
  90. Yoshiyuki, M., and Y. Imaizumi. 1991. Taxonomic status of the large mole from the Echigo Plam, central Japan, with description of a new species (Mammalia, Insectivora, Talpidae). Bulletin of the National Museum of Nature and Science-Series A 17: 101–110.Google Scholar
  91. Ziegler, A.C. 1971. Dental homologies and possible relationships of recent Talpidae. Journal of Mammalogy 52: 50–68. Google Scholar
  92. Ziegler, R. 1985. Talpiden (Mammalia, Insectivora) aus dem Orlenaium und Astaracium Bayerns. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 25: 131–175.Google Scholar
  93. Ziegler, P.A. 1990a. Geological atlas of Western and Central Europe, 2nd edn. Bath: Geological Society Publishing House.Google Scholar
  94. Ziegler, R. 1990b. Talpidae (Insectivora, Mammalia) aus dem Oberoligozän und Untermiozän Süddeutschlands. Stuttgarter Beiträge zur Naturkunde B 167: 1–81.Google Scholar
  95. Ziegler, R. 1994. Bisher übersehene Insectivora (Mammalia) aus dem Untermiozän von Wintershof-West bei Eichstätt (Bayern). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 34: 291–306.Google Scholar
  96. Ziegler, R. 1998. Wirbeltiere aus dem Unter-Miozän des Lignit-Tagebaues Oberdorf (Weststeirisches Becken, Österreich): 5. Marsupialia, Insectivora und Chioptera (Mammalia). Annalen des Naturhistorischen Museums Wien 99 A: 43–97.Google Scholar
  97. Ziegler, R., T. Dahlmann, J.W.F. Reumer, and G. Storch. 2005. Germany. In The fossil record of the Eurasian Neogene Insectivores (Erinaceomorpha, Soricomorpha, Mammalia), Part I, ed. Lars W. van den Hoek Ostende, Constantin S. Doukas and Jelle W. F. Reumer. Scripta Geologica Spezial Issue 5: 61–98.Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Steinmann-Institut für Geologie, Mineralogie und PaläontologieBonnGermany

Personalised recommendations