Paläontologische Zeitschrift

, Volume 86, Issue 1, pp 91–102 | Cite as

On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology

Short Communication

Abstract

Dinosaurs with fossilized filamentous integument structures are usually preserved in a highly flattened state. Several different feather types have been described on this basis, but the two-dimensional preservation of specimens during fossilization makes the identification of single feather structures difficult due to overlapping feather structures in vivo. Morphological comparison with the diversity of recent feather types is therefore absolutely vital to avoid misinterpretation. To simulate the preservation process, a cadaver of recent Carduelis spinus (European siskin) was flattened in a printing press. Afterwards, the structure of the plumage was compared with the morphology of a single body feather from the same specimen. In comparison with the single feather, the body plumage of the flattened bird looked rather filamentous. It was almost impossible to identify single structures, and in their place, various artefacts were produced. The investigation of plumage in a specimen of the Mesozoic bird Confuciusornis sanctus reveals similar structures. This indicates that flattening of specimens during fossilization amplifies the effect of overlapping among feathers and also causes a loss of morphological detail which can lead to misinterpretations. The results are discussed in connection with some dubious feather morphologies in recently described theropods and basal birds. Based on recent feather morphology, the structure of so-called proximal ribbon-like pennaceous feathers (PRPFs) found in many basal birds is reinterpreted. Furthermore, the morphology of a very similar-looking feather type found in the forelimb and tail of an early juvenile oviraptorosaur is discussed and diagnosed as the first feather generation growing out of the feather sheath. Thus, the whole plumage of this theropod might represent neoptile plumage.

Keywords

Feather morphology Taphonomy Preservation Theropoda 

Kurzfassung

Dinosaurier mit fossilierten, filamentösen Integument-Strukturen sind in der Regel stark zerdrückt erhalten. Basierend auf diesen Funden wurden mehrere Federtypen beschrieben, allerdings ist die zweidimensionale Erhaltung während der Fossilisation die Identifikation von einzelnen Federstrukturen erschwert, da Federstrukturen in vivo einander überlappen. Des Weiteren ein morphologischer Vergleich mit der Fülle von rezenten Federtypen absolut wichtig ist, um Fehlinterpretationen zu vermeiden. Um diesen Prozess nachzuvollziehen wurde ein Kadaver von Carduelis spinus in einer Druckerpresse zerdrückt. Im Anschluss wurde die Struktur des Gefieders mit der Morphology einer einzelnen Körperfeder von Carduelis spinus verglichen. Im Vergleich zu der Einzelfeder ist das Gefieder des zerdrückten Vogels eher faserig. Einzelne Strukturen lassen sich schwer nachweisen, es können jedoch artifizielle Strukturen beobachtet werden. Die Untersuchung des Gefieders eines Exemplars des mesozoischen Vogels Confuciusornis sanctus führt zum ähnlichen Resultat. Das bedeutet, dass das Zerdrücken der Kadaver während der Fossilisation den Effekt der Überlappung verstärkt und ebenfalls zum Verlust von morphologischen Details führt, was zu Fehlinterpretationen verleiten kann. Die Ergebnisse werden im Zusammenhang mit einigen fragwürdigen Federmorphologien bei kürzlich beschriebenen Theropoda und basalen Vögeln diskutiert. Basierend auf der Morphologie von rezenten Federn wird der Aufbau von so genannten proximal ribbon-like pennaceous feathers (PRPFs), wie man sie bei vielen basalen Vögeln findet, neu interpretiert. Weiterhin wird die Morphologie eines ähnlichen aussehenden Federtyps, der an den Armen und am Schwanz bei einem sehr jungen Oviraptorosaurier ausgebildet ist, diskutiert und als erste Federgeneration, die gerade aus der Federscheide wächst, bestimmt. Daraus folgt, dass wahrscheinlich das gesamte Gefieder dieses Theropoden zum Neoptil-Gefieder gehört.

Schlüsselwörter

Federmorphologie Taphonomy Erhaltung Theropoda 

References

  1. Benton, M.J., Z. Zhou, P.J. Orr, F. Zhang, and S.L. Kearns. 2008. The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed our knowledge of Mesozoic life. Proceedings of the Geologists’ Association 119: 209–228.CrossRefGoogle Scholar
  2. Chiappe, L.M., S. Ji, Q. Ji, and M.A. Norell. 1999. Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bulletin of the American Museum of Natural History 242: 1–89.Google Scholar
  3. Chiappe, L.M., S. Ji, and Q. Ji. 2007. Juvenile birds from the early cretaceous of China: Implications for enantiornithine ontogeny. American Museum Novitates 3594: 1–49.CrossRefGoogle Scholar
  4. Clark, J.M., M.A. Norell, and P.J. Makovicky. 2002. Cladistic approaches to the relationships of birds to other theropod dinosaurs. In Mesozoic birds: above the heads of dinosaurs, ed. L.M. Chiappe, and L.M. Witmer, 31–61. Berkeley, Los Angeles, London: University of California Press.Google Scholar
  5. Currie, P.J., and P. Chen. 2001. Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Canadian Journal of Earth Sciences 38: 1705–1727.CrossRefGoogle Scholar
  6. Davis, P.G., and D.E.G. Briggs. 1995. Fossilization of feathers. Geology 23: 783–786.CrossRefGoogle Scholar
  7. Dial, K.P., R.J. Randell, and T.R. Dial. 2006. What use is half a wing in the ecology and evolution of birds? BioScience 56: 437–445.CrossRefGoogle Scholar
  8. Dyke, G.J., and M.A. Norell. 2005. Caudipteryx as a non-avialan theropod rather than a flightless bird. Acta Palaeontologica Polonica 50: 101–116.Google Scholar
  9. Feduccia, A. 2002. Birds are dinosaurs: Simple answer to a complex problem. The Auk 119: 1187–1201.CrossRefGoogle Scholar
  10. Feduccia, A., T. Lingham-Soliar, and J.R. Hinchliffe. 2005. Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence. Journal of Morphology 266: 125–166.CrossRefGoogle Scholar
  11. Foth, C. 2011. The morphology of neoptile feathers: Ancestral state reconstruction and its phylogenetic implications. Journal of Morphology 272: 387–403.CrossRefGoogle Scholar
  12. Goldstein, G., K.R. Flory, B.A. Browne, S. Majid, J.M. Ichida, and E.H. Burtt. 2004. Bacterial degradation of black and white feathers. Auk 121: 656–659.CrossRefGoogle Scholar
  13. Glutz von Blotzheim, U., K.M. Bauer, and E. Bezzel. 1994. Galliformes und Gruiformes. Wiesbaden: AULA-Verlag.Google Scholar
  14. He, H.Y., X.L. Wang, Z. Zhou, R.X. Zhu, F. Jin, F. Wang, X. Ding, and A. Boven. 2004. 40Ar/39Ar dating of ignimbrite from inner Mongolia, northeastern China, indicates a post-middle Jurassic age for the overlying Daohugou Bed. Geophysical Research Letters 31: L20609.CrossRefGoogle Scholar
  15. He, T., X.L. Wang, and Z.H. Zhou. 2008. A new genus and species of caudipterid dinosaur from the lower Cretaceous Jiufotang formation of western Liaoning, China. Vertebrata PalAsiatica 46: 178–189.Google Scholar
  16. Hone, D.W.E., Tischlinger, H., Xu, X. and F.C. Zhang. 2010. The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light. PLoS ONE 5 (2): e9223. doi:10.1371/journal.pone.0009223.
  17. Hou, L.H., Z.H. Zhou, L.D. Martin, and A. Feduccia. 1995. A beaked bird from the Jurassic of China. Nature 377: 616–618.CrossRefGoogle Scholar
  18. Hu, D.Y., L.H. Hou, L.J. Zhang, and X. Xu. 2009. A pre-Archaeopteryx troodontid from China with long feathers on the metatarsus. Nature 461: 640–643.CrossRefGoogle Scholar
  19. Ji Q. and Ji S. 1996. [On the discovery of the earliest fossil bird in China (Sinosauropteryx gen. nov.) and the origin of birds]. Chinese Geology 233:30–33 (in Chinese).Google Scholar
  20. Ji, Q., P.J. Currie, M.A. Norell, and S.A. Ji. 1998. Two feathered dinosaurs from northeastern China. Nature 393: 753–761.CrossRefGoogle Scholar
  21. Kundrát, M. 2004. When did theropods become feathered?–Evidence from a pre-Archaeopteryx feathery appendages. Journal of Experimental Zoology (MOL DEV EVOL) 302B: 355–364.CrossRefGoogle Scholar
  22. Li, Q., K. Gao, J. Vinther, M.D. Shawkey, J. Clarke, L. D’Alba, Q. Meng, D.E.G. Briggs, and R.O. Prum. 2010. Plumage color patterns of an extinct dinosaur. Science 327: 1369–1372.CrossRefGoogle Scholar
  23. Lingham-Soliar, T., A. Feduccia, and X. Wang. 2007. A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proceedings of the Royal Society, London B 274: 1823–1829.CrossRefGoogle Scholar
  24. Lucas, A.M., and P.R. Stettenheim. 1972. Avian anatomy: Integument. Part I & II. U.S. Washington: Government Printing Office.Google Scholar
  25. Maderson, P.A., W.J. Hillenius, U. Hiller, and C.C. Dove. 2009. Towards a comprehensive model of feather generation. Journal of Morphology 270: 1166–1208.CrossRefGoogle Scholar
  26. Martill, D.M., and E. Frey. 1995. Colour patterning preserved in lower Cretaceous birds and insects: The Crato Formation of N. E. Brazil. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1995: 118–128.Google Scholar
  27. Mayr, G., D.S. Peters, G. Plodowski, and O. Vogel. 2002. Bristle-like integumentary structures at the tail of the horned dinosaur Psittacosaurus. Naturwissenschaften 89: 361–365.CrossRefGoogle Scholar
  28. Norell, M.A., and X. Xu. 2005. Feathered dinosaurs. Annual Review of Earth and Planetary Sciences 33: 277–299.CrossRefGoogle Scholar
  29. Prum, R.O. 1999. Development and evolutionary origin of feathers. Journal of Experimental Zoology (MOL DEV EVOL) 285: 291–306.CrossRefGoogle Scholar
  30. Prum, R.O. 2002. Perspectives in ornithology. Why ornithologist should care about the theropod origin of birds. The Auk 119: 1–17.CrossRefGoogle Scholar
  31. Prum, R.O. 2003. Are current critiques of the theropod origin of birds science? Rebuttal to Feduccia (2002). The Auk 120: 550–561.CrossRefGoogle Scholar
  32. Prum, R.O. 2010. Moulting tail feathers in a juvenile oviraptorosaur. Nature 468: E1.CrossRefGoogle Scholar
  33. Prum, R.O., and S. Williamson. 2001. Theory of the growth and evolution of feather shape. Journal of Experimental Zoology (MOL DEV EVOL) 291: 30–57.CrossRefGoogle Scholar
  34. Rauhut, O.W.M. 2003. The interrelationships and evolution of basal theropod dinosaurs. Special Papers in Palaeontology 69: 1–213.Google Scholar
  35. Sansom, R.S., S.E. Gabbott, and M.A. Purnell. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463: 797–800.CrossRefGoogle Scholar
  36. Schaub, S. 1912. Die Nestdunen der Vögel und ihre Bedeutung für die Phylogenie der Feder. Verhandlungen der Naturforschenden Gesellschaft in Basel 23: 131–182.Google Scholar
  37. Senter, P. 2007. A new look at the phylogeny of Coelurosauria (Dinosauria: Theropoda). Journal of Systematic Palaeontology 5: 429–463.CrossRefGoogle Scholar
  38. Sereno, P.C. 1999. The evolution of dinosaurs. Science 284: 2137–2147.CrossRefGoogle Scholar
  39. Starck, J.M., and R.E. Ricklefs. 1998. Patterns of Development: The altricial-precocial spectrum. In Avian growth, development. Evolution in the altricial precocial spectrum, 3–30, ed. J.M. Starck, and R.E. Ricklefs. Oxford University Press: New York, Oxford.Google Scholar
  40. Vinther, J., D.E.G. Briggs, R.O. Prum, and V. Saranathan. 2008. The colour of fossil feathers. Biological Letters 4: 522–525.CrossRefGoogle Scholar
  41. Vinther, J., D.E.G. Briggs, J. Clarke, G. Mayr, and R.O. Prum. 2010. Structural coloration in a fossil feather. Biology Letters 6: 128–131.CrossRefGoogle Scholar
  42. Watson, G.E. 1963. The mechanism of feather replacement during natural molt. The Auk 80: 486–495.Google Scholar
  43. Weishampel, D.B., D.E. Fastovsky, M. Watabe, D.J. Varricchio, F. Jackson, K. Tsogtbaatar, and R. Barsbold. 2008. New Oviraptorid embryos from Bugin-Tsav, Nemegt Formation (Upper Cretaceous), Mongolia, with insights into their habitat and growth. Journal of Vertebrate Paleontology 28: 1110–1119.CrossRefGoogle Scholar
  44. Wuttke, M. 1983. “Weichteil-Erhaltung” durch lithifizierte Mikroorganismen bei mittel-eozänen Vertebraten aus dem Ölschiefer der “Grube Messel” bei Darmstadt. Senckenbergiana Lethaea 64: 509–527.Google Scholar
  45. Xu, X., and Y. Guo. 2009. The origin and early evolution of feathers: Insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47: 311–329.Google Scholar
  46. Xu, X., Z.H. Zhou, X.L. Wang, X. Kuang, F.C. Zhang, and X. Du. 2004. Four-winged dinosaurs from China. Nature 421: 335–340.CrossRefGoogle Scholar
  47. Xu, X., X. Zheng, and H. You. 2010a. Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464: 1338–1341.CrossRefGoogle Scholar
  48. Xu, X., X. Zheng, and H. You. 2010b. Reply: Moulting tail feathers in a juvenile oviraptorosaur. Nature 468: E2.CrossRefGoogle Scholar
  49. Zhang, F.C., and Z.H. Zhou. 2000. A primitive enantiornithine bird and the origin of feathers. Science 290: 1955–1959.CrossRefGoogle Scholar
  50. Zhang, F.C., Z.H. Zhou, and G. Dyke. 2006. Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geological Journal 41: 395–404.CrossRefGoogle Scholar
  51. Zhang, F.C., Z.H. Zhou, X. Xu, X.L. Wang, and C. Sullivan. 2008. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455: 1105–1108.CrossRefGoogle Scholar
  52. Zhang, F., S.L. Kearns, P.J. Orr, M.J. Benton, Z. Zhou, D. Johnson, X. Xu, and X. Wang. 2010. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463: 1075–1078.CrossRefGoogle Scholar
  53. Zheng, X., Z.H. Zhang, and L. Hou. 2007. A new enantiornithine bird with four long rectrices from the early Cretaceous of northern Hebei, China. Acta Geologica Sinica 81: 703–708.CrossRefGoogle Scholar
  54. Zhou, Z., and F. Zhang. 2004. A precocial avian embryo from the lower Cretaceous of China. Science 306: 653.CrossRefGoogle Scholar
  55. Zhou, Z., P.M. Barrett, and J. Hilton. 2003. An exceptionally preserved lower Cretaceous ecosystem. Nature 421: 807–814.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Allgemeine & Spezielle Zoologie, Institut für BiowissenschaftenUniversität Rostock Universitätsplatz 2RostockGermany
  2. 2.Bayerische Staatssammlung für Paläontologie und GeologieMunichGermany

Personalised recommendations