Advertisement

Paläontologische Zeitschrift

, Volume 85, Issue 2, pp 169–184 | Cite as

Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea)

  • Markus Wilmsen
  • Abdolmajid Mosavinia
Research Paper

Abstract

Taxonomic concepts of Early–Middle Cenomanian representatives of Schloenbachia Neumayr, 1875 are evaluated based on well-preserved, abundant faunas from NE Iran (Atamir Formation, Koppeh Dagh) and Germany (Essen Greensand and Baddeckenstedt formations at several localities in northern Germany; Meißen Formation of Saxony). From a single Lower Cenomanian horizon in the Atamir Formation, a complete suite of specimens of Schloenbachia varians (J. Sowerby, 1817), ranging from moderately involute, compressed and finely ornamented (“forma subplana”) to more evolute, depressed and strongly spinose forms (“forma ventriosa”) with all transitional morphologies, is documented. Also in the shallow-water faunas of the “Klippenfazies” of the Essen Greensand Formation at Mülheim-Broich and of the Meißen Formation, all morphotypes co-occur. Thus, these forms cannot be regarded as geographic subspecies or successive chrono-subspecies, but reflect a high degree of variability in shell form and ornament (phenotypic plasticity) in S. varians. Interestingly, strongly tuberculate forms are rare to absent in contemporaneous offshore settings as documented by the Baddeckenstedt Formation. The phenotypic plasticity in Early Cenomanian S. varians populations is explained by ecophenotypic variation along a depth (proximal–distal) gradient: strongly tuberculate, depressed forms reflect comparatively shallow, nearshore environments with higher water energy and predation pressure, whereas compressed, weakly ornamented morphs are forms of open (and deeper) marine waters. The complete range of different forms is also observed in micro- and macroconchs, suggesting that the morphological variability is not controlled by sexual dimorphism. Based on its similarity to S. varians, also the Middle Cenomanian Ammonites coupei Brongniart, 1822 may be placed in the synonymy of the former.

Keywords

Cenomanian Schloenbachiidae Systematic palaeontology Phenotypic plasticity 

Kurzfassung

Taxonomische Konzepte früh- bis mittelcenomaner Vertreter von Schloenbachia Neumayr, 1875 werden auf der Basis gut erhaltener, reicher Faunen aus dem NE Iran (Atamir-Formation im Koppeh Dagh) und Deutschland (Essen Grünsand- und Baddeckenstedt Formationen verschiedener Lokalitäten in Norddeutschland, Meißen-Formation in Sachsen) bewertet. Aus einem einzigen Horizont im Untercenoman der Atamir-Formation kann eine vollständige Sequenz von involuten, hochmündigen und schwach ornamentierten Formen (“forma subplana”) hin zu breitmündigen und stark skulpturierten Formen (“forma ventriosa”) von Schloenbachia varians (J. Sowerby, 1817) mit allen morphologischen Übergängen dokumentiert werden. Auch in den Flachwasserabfolgen (“Klippenfazies”) der Essen Grünsand-Formation in Mülheim-Broich und der Meißen Formation kommen alle Morphotypen gemeinsam vor. Diese können daher nicht als geographische oder chronologische Unterarten gedeutet werden, sondern reflektieren eine ausgeprägte Variabilität in Schalenform und Ornament (phänotypische Plastizität) bei S. varians. Interessanterweise fehlen die stark skulpturierten Formen der Art in zeitgenössischen Abfolgen des offenen Schelfs (Baddeckenstedt-Formation). Die Variabilität in früh-cenomanen S. varians-Populationen wird als ökophenotypische Variation infolge von sich ändernden Umweltbedingungen entlang eines Tiefengradienten von proximal nach distal gedeutet: die stark skulpturierten, breitmündigen Vertreter sind Flachwasserformen und reflektieren höhere Wasserenergie und Räuberdrücke, wohingegen die hochmündigen, schwach ornamentierten Vertreter Formen des tieferen Wassers sind. Das Vorhandensein aller möglichen Übergangsformen zwischen den morphologischen Endgliedern, die sowohl in Micro- als auch in Macroconchen beobachtet wird, zeigt weiterhin, dass die Variabilität in Schalenform und Ornament nicht durch Geschlechtsdimorphismus gesteuert wird. Aufgrund der weitgehend übereinstimmenden Morphologie mit S. varians sollte auch Ammonites coupei Brongniart, 1822 aus dem Mittelcenoman in die Synonymie von Sowerby’s Art gestellt werden.

Schlüsselwörter

Cenoman Schloenbachiidae Systematische Paläontologie Phänotypische Plastizität 

Notes

Acknowledgments

We are thankful for constructive reviews by J.W.M. Jagt (Maastricht) and A. Lukeneder (Vienna). Discussions with C.J. Wood (Minehead) and I. Walaszczyk (Warszawa) improved the paper considerably. Financial support for fieldwork in northern Germany to M.W. by the Deutsche Forschungsgemeinschaft (DFG, code WI 1743/3-1) is gratefully acknowledged. A.M. acknowledges a grant of the Iranian government and logistic help by the Payame Noor and Shahid Beheshti Universities. Furthermore, he thanks his thesis supervisors M.R. Chahida (Tehran) and K. Seyed-Emami (Tehran) for support. We also thank U. Scheer (Ruhr-Museum Essen) for access to the material from Mülheim-Broich, H. Schönig (Würzburg) and R. Winkler (Dresden) for their excellent photographic work and N. Richardt (Dresden) for the donation of S. varians from Halle-Ascheloh.

References

  1. Berberian, M., and P. King. 1981. Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18: 210–265.CrossRefGoogle Scholar
  2. Boyle, P.R., and S. von Boletzky. 1996. Cephalopod populations: Definition and dynamics. Philosophical Transactions of the Royal Society of London B 351: 985–1002.CrossRefGoogle Scholar
  3. Brongniart, A. 1822. Sur quelques terrains de Craie hors du Bassin de Paris. In Description géologique des environs de Paris, ed. G. Cuvier, and A. Brongniart, 80–106. Paris: Dufour et d’Ocagne.Google Scholar
  4. Crampton, J.S., and A.S. Gale. 2005. A plastic boomerang: Speciation and intraspecific evolution in the Cretaceous bivalve Actinoceramus. Palaeobiology 31: 559–577.Google Scholar
  5. Diedrich, C. 2001. Faziesabhängige Schalenmorphologie des Großammoniten Puzosia dibleyi (Spath 1922) aus dem Puzosia-Event I (Ober-Cenoman) von Europa. Senckenbergiana Lethaea 80: 463–483.CrossRefGoogle Scholar
  6. Dietze, H. 1960. Paläontologische und stratigraphische Untersuchungen der Klippenfazies von Oberau und Meißen (Sächsische Oberkreide). Jahrbuch des Staatlichen Museums für Mineralogie und Geologie Dresden 1960: 1–74.Google Scholar
  7. Douvillé, H. 1890. Sur la classification des cératites de la Craie. Bulletin de la Société Géologique de France 18(3): 275–292.Google Scholar
  8. Gause, G.F. 1947. Problems of evolution. Transactions of the Connecticut Academy of Arts and Sciences 37: 17–68.Google Scholar
  9. Hancock, J., W.J. Kennedy, and H. Klaumann. 1972. Ammonites from the transgressive Cretaceous on the Rhenish Massif, Germany. Palaeontology 15: 445–449.Google Scholar
  10. Hiss, M. 1982. Ammoniten des Cenomans vom Südrand der westfälischen Kreide zwischen Unna und Möhnsee. Paläontologische Zeitschrift 56: 177–208.Google Scholar
  11. Hyatt, A. 1889. Genesis of the Arietidae. Smithonian Contributions to Knowledge 673, i–xi + 1–238.Google Scholar
  12. Immel, H., K. Seyed-Emami, and M. Afshar-Harb. 1997. Kreide-Ammoniten aus dem iranischen Teil des Koppeh-Dagh (NE-Iran). Zitteliana 21: 159–190.Google Scholar
  13. Juignet, P., and W.J. Kennedy. 1976. Faunes d’ammonites et biostratigraphie comparée du Cénomanien du nord-ouest de la France (Normandie) et du sud de l’Angleterre. Bulletin trimestriel de la Société géologique de Normandie et Amis du Muséum du Havre 63: 1–193.Google Scholar
  14. Kahrs, E. 1927. Zur Paläogeographie der Oberkreide in Rheinland-Westfalen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilagen-Band 58B: 627–687.Google Scholar
  15. Kaplan, U., W.J. Kennedy, J. Lehmann, and R. Marcinowski. 1998. Stratigraphie und Ammonitenfaunen des westfälischen Cenoman. Geologie und Paläontologie in Westfalen 51: 1–236.Google Scholar
  16. Kelley, P.H., and T.A. Hansen. 2001. Mesozoic marine revolution. In Palaeobiology II, ed. D.E.G. Briggs, and P.R. Crowther, 94–97. Oxford: Blackwell.CrossRefGoogle Scholar
  17. Kennedy, W.J. 1971. Cenomanian ammonites from Southern England. Special Papers in Palaeontology 8: 1–133.Google Scholar
  18. Kennedy, W.J., and W.A. Cobban. 1976. Aspects of ammonite biology, biogeography, and biostratigraphy. Special Papers in Palaeontology 17: 1–94.Google Scholar
  19. Kennedy, W.J., and J.M. Hancock. 1978. The mid-Cretaceous of the United Kingdom. Annales du Muséum d’Histoire naturelle Nice 4 (1976): v.1–v.71.Google Scholar
  20. Kennedy, W.J., and P. Juignet. 1983. A revision of the ammonite faunas of the Type Cenomanian. 1. Introduction, Ancyloceratina. Cretaceous Research 4: 3–83.CrossRefGoogle Scholar
  21. Kennedy, W.J., and P. Juignet. 1984. A revision of the ammonite faunas of the Type Cenomanian. 2. The families Binneyitidae, Desmoceratidae, Engonoceratidae, Placenticeratidae, Hoplitidae, Schloenbachiidae, Lyelliceratidae and Forbesiceratidae. Cretaceous Research 5: 93–161.CrossRefGoogle Scholar
  22. Kennedy, W.J., and P. Juignet. 1993. A revision of the ammonite faunas of the Type Cenomanian. 4. Acanthoceratinae (Acompsoceras, Acanthoceras, Protacanthoceras, Cunningtoniceras and Thomelites). Cretaceous Research 14: 145–190.CrossRefGoogle Scholar
  23. Kennedy, W.J., and P. Juignet. 1994a. A revision of the ammonite faunas of the Type Cenomanian. 5. Acanthoceratinae (Calycoceras (Calycoceras),C. (Gentoniceras) and C. (Newboldiceras). Cretaceous Research 15: 17–57.CrossRefGoogle Scholar
  24. Kennedy, W.J., and P. Juignet. 1994b. A revision of the ammonite faunas of the Type Cenomanian. 6. Acanthoceratinae (Calycoceras (Proeucalycoceras), Eucalycoceras, Pseudocalycoceras, Neocardioceras), Euomphaloceratinae, Mammitinae and Vascoceratidae. Cretaceous Research 15: 469–501.CrossRefGoogle Scholar
  25. Kennedy, W.J., and C.W. Wright. 1981. Euhystrichoceras and Algericeras, the last mortoceratine ammonites. Palaeontology 24: 417–435.Google Scholar
  26. Kennedy, W.J., M.R. Chahida, and M.A. Djafarian. 1979. Cenomanian cephalopods from the Glauconitic Limestone southeast of Esfahan, Iran. Acta Palaeontologica Polonica 24: 3–50.Google Scholar
  27. Kennedy, W.J., P. Juignet, and C.W. Wright. 1986. A revision of the ammonite faunas of the Type Cenomanian. 3. Mantelliceratinae. Cretaceous Research 7: 19–62.CrossRefGoogle Scholar
  28. Kennedy, W.J., C. King, and D.J. Ward. 2008. The upper Albian and lower Cenomanian succession at Kolbay, eastern Mangyshlak (southwest Kazakhstan). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 78: 117–147.Google Scholar
  29. Kin, A. 2010. Early Maastrichtian ammonites and nautiloids from Hrebenne, southeast Poland, and phenotypic plasticity of Acanthoscaphites tridens (Kner, 1848). Cretaceous Research 31: 27–60.CrossRefGoogle Scholar
  30. Mantell, G.A. 1822. The Fossils of the South Downs, or Illustrations of the Geology of Sussex, i–xiv + 1–328, 43 pls. London: Lupton Rolfe.Google Scholar
  31. Marcinowski, R. 1980. Cenomanian ammonites from the German Democratic Republic, Poland, and the Soviet Union. Acta Geologica Polonica 30: 215–325.Google Scholar
  32. Moriya, K., H. Nishi, H. Kawahata, K. Tanabe, and Y. Takayanagi. 2003. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31: 167–170.CrossRefGoogle Scholar
  33. Mosavinia, A. 2009. Biostratigraphy of the middle Cretaceous in the eastern Koppeh Dagh, NE Iran (based on the ammonite fauna), 1–350, 63 pls. Mashad: Unpublished PhD thesis, Payame Noor University. [in Farsi].Google Scholar
  34. Mosavinia, A., M. Wilmsen, A. Asghar Aryai, M.R. Chahida, and J. Lehmann. 2007. Mortoniceratinae (Ammonitina) from the Upper Albian (Cretaceous) of the Atamir Formation, Koppeh Dagh Mountains, NE Iran. Neues Jahrbuch für Geologie und Paläontologie 246(1): 83–95.CrossRefGoogle Scholar
  35. Neumayr, M. 1875. Die Ammonitiden der Kreide und die Systematik der Ammonitiden. Zeitschrift der deutschen Geologischen Gesellschaft 27: 854–942.Google Scholar
  36. Niebuhr, B., M. Hiss, U. Kaplan, K.-A. Tröger, S. Voigt, T. Voigt, F. Wiese, and M. Wilmsen. 2007. Lithostratigraphie der norddeutschen Oberkreide. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 55: 1–136.Google Scholar
  37. Parona, C.F., and G. Bonarelli. 1897. Fossili Albiani d’Escragnolles del Nizzardo e della Ligurias occidentale. Paleontographica Italia 2: 53–112.Google Scholar
  38. Philip, J., and M. Floquet. 2000. Late Cenomanian (94.7–93.5). In Atlas Peri-Tethys palaeogeographical maps, ed. J. Dercourt, M. Gaetani, B. Vrielynck, E. Barrier, B. Biju-Duval, M.F. Brunet, J.P. Cadet, S. Crasquin, and M. Sandulescu, 129–136. Paris: CCGM/CGMW.Google Scholar
  39. Pictet, F.J. and W. Roux, 1847–1854. Description des mollusques fossiles qui se trouvent dans les Grès Verts des environs de Genève. Mémoires de la Société de Physique et d’Histoire naturelle de Genève 11: 257–412 (1847); 12: 21–151 (1849); 13: 73–173 (1852); 14: 279–341 (1854).Google Scholar
  40. Prescher, H. 1981. Probleme der Korrelation des Cenomans und Turons in der Sächsischen und Böhmischen Kreide. Zeitschrift für Geologische Wissenschaften 9: 367–373.Google Scholar
  41. Prescher, H., and K.-A. Tröger. 1989. Die “Meißner Schichten” der sächsischen Kreide (Forschungsgeschichte, Litho- und Biostratigraphie). Abhandlungen des Staatlichen Museums für Mineralogie und Geologie Dresden 36: 155–167.Google Scholar
  42. Raisossadat, S.N. 2006. The ammonite family Parahoplitidae in the Sanganeh Formation of the Kopet Dagh Basin, north-estern Iran. Cretaceous Research 27: 907–922.CrossRefGoogle Scholar
  43. Reyment, R.A. 1988. Does sexual dimorphism occur in upper Cretaceous ammonites? Senckenbergiana Lethaea 69: 109–119.Google Scholar
  44. Reyment, R.A., and W.J. Kennedy. 1991. Phenotypic plasticity in a Cretaceous ammonite analyzed by multivariate statistical methods: A methodological study. Evolutionary Biology 25: 411–426.Google Scholar
  45. Robaszynski, F., P. Juignet, A.S. Gale, F. Amédro, and J. Hardenbol, 1998. Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In Mesozoic and Cenozoic sequence stratigraphy of European basins, ed. P. de Graciansky, J. Hardenbol, T. Jacquin, and P.R. Vail. SEPM (Society for Sedimentary Geology), Special Publication 60: 363–385. Boulder: SEPM.Google Scholar
  46. Scholz, G. 1973. Sur l’âge de la faune d’ammonites au Château près de St-Martin-en-Vercors (Drôme) et quelques considérations sur l’évolution des Turrilidés et des Hoplitidés vracono-cénomaniens. Géologie Alpine 49: 119–129.Google Scholar
  47. Seyed-Emami, K. 1982. Turrilitidae (Ammonoidea) aus dem Glaukonitkalk bei Esfahan (Zentraliran). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 163: 417–434.Google Scholar
  48. Seyed-Emami, K. 1988. Jurassic and Cretaceous ammonite faunas of Iran and their palaeobiogeographic significance. In Cephalopods: Present and past, ed. J. Wiedmann, and J. Kullmann, 599–606. Stuttgart: Schweizerbart.Google Scholar
  49. Seyed-Emami, K., and A.A. Aryai. 1981. Ammoniten aus dem unteren Cenoman von Nordostiran (Koppeh-Dagh). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 21: 23–39.Google Scholar
  50. Seyed-Emami, K., R. Förster, and A. Mojtehedi. 1984. Ammoniten aus dem mittleren Cenoman von Nordostiran (Koppeh-Dagh). Neues Jahrbuch für Geologie und Paläontologie. Monatshefte 1984(3): 159–172.Google Scholar
  51. Sharpe, D. 1853–1857. Description of the fossil remains of Mollusca found in the chalk of England: Cephalopoda. Monograph of the Palaeontographical Society London, 1–26.Google Scholar
  52. Sowerby, J. 1812–1822. The mineral conchology of Great Britain, or coloured figures and descriptions of those remains of testaceous animals or shells which have been preserved at various times and depths in the earth, 1812–1815, Vol. 1, vii + 242 pp., pls. 1–102. 1815–1818, Vol. 2, 252 pp., pls. 103–203. 1818–1821, Vol. 3, 194 pp., pls. 204–306. 1821–1822, Vol. 4, 1–114, pls. 307–383. London: The author.Google Scholar
  53. Spath, L.F. 1926. On the zones of the Cenomanian and the uppermost Albian. Proceedings of the Geologists’ Association 37: 420–432.CrossRefGoogle Scholar
  54. Spath, L.F. 1938. Problems of ammonite nomenclature. On Ammonites varians J. Sowerby. Geological Magazine 75: 543–547.Google Scholar
  55. Stieler, C. 1922. Über Gault- und Cenoman-Ammoniten aus dem Cenoman des Cap Blanc Nez. Mit besonderer Berücksichtigung der Gattung Schloenbachia Neum. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 1922: 19–44.Google Scholar
  56. Thomel, G. 1992. Ammonites du Cénomanien et de Turonien du sud-est de la France. Tome 2: Considérations sur les faunes d’ammonites Cénomaniennes et Turoniennes des Chaînes Subalpines Méridionales (Haute-Provence, Alpes Maritimes, Var). Analyse systématique et paléobiologie, 1–383. Nice: Serre Editeur.Google Scholar
  57. Trussell, G.C., and L.D. Smith. 2000. Induced defenses in response to an invading crab predator: An explanation of historical and geographic phenotype change. Proceedings of the National Academy of Sciences 97: 2123–2127.CrossRefGoogle Scholar
  58. Tsujita, C.J., and G.E.G. Westermann. 1998. Ammonoid habitats and habits in the Western Interior Seaway: A case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 144: 135–160.CrossRefGoogle Scholar
  59. Vermeij, G.J. 1977. The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology 3: 245–258.Google Scholar
  60. Ward, P. 1981. Shell sculpture as an defensive adaption in ammonoids. Paleobiology 7: 96–100.Google Scholar
  61. Ward, P. 1996. Ammonoid extinction. In Ammonoid paleobiology, ed. N.H. Landman, K. Tanabe, and R.A. Davies, Topics in Geobiology 13: 815–824. New York and London: Plenum Press.Google Scholar
  62. Westermann, G.E.G. 1996. Ammonoid life and habitat. In Ammonoid paleobiology, ed. N.H. Landman, K. Tanabe, and R.A. Davies, Topics in Geobiology 13: 607–707; New York and London: Plenum Press.Google Scholar
  63. Wiedmann, J., and H.L. Schneider, 1979. Cephalopoden und Alter der Cenoman-Transgression von Mülheim-Broich, SW-Westfalen. In Aspekte der Kreide Europas, ed. J. Wiedmann, IUGS Series A 6: 645–680. Stuttgart: Schweizerbart.Google Scholar
  64. Wilmsen, M. 2000. Evolution and demise of a mid-Cretaceous carbonate shelf: The Altamira Limestones (Cenomanian) of northern Cantabria (Spain). Sedimentary Geology 133: 195–226.CrossRefGoogle Scholar
  65. Wilmsen, M. 2003. Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research 24: 525–568.CrossRefGoogle Scholar
  66. Wilmsen, M. 2008. An Early Cenomanian (Late Cretaceous) maximum flooding bioevent in NW Europe: Correlation, sedimentology and biofacies. Palaeogeography, Palaeoclimatology, Palaeoecology 258: 317–333.CrossRefGoogle Scholar
  67. Wilmsen, M., B. Niebuhr, and M. Hiss. 2005. The Cenomanian of northern Germany: Facies analysis of a transgressive biosedimentary system. Facies 51: 242–263.CrossRefGoogle Scholar
  68. Wilmsen, M., B. Niebuhr, C.J. Wood, and D. Zawischa. 2007. The fauna and palaeoecology of the Middle Cenomanian Praeactinocamax primus Event from the type-locality (Wunstorf quarry, northern Germany). Cretaceous Research 28: 428–460.CrossRefGoogle Scholar
  69. Wright, C.W., and W.J. Kennedy, 1984. The Ammonoidea of the lower chalk. Part I. Monograph of the Palaeontographical Society, London 137 (for 1983): 1–126.Google Scholar
  70. Wright, C.W., and W.J. Kennedy. 1987. The Ammonoidea of the lower chalk. Part II. Monograph of the Palaeontographical Society, London 139: 127–218.Google Scholar
  71. Wright, C.W., and W.J. Kennedy. 1990. The Ammonoidea of the lower chalk. Part III. Monograph of the Palaeontographical Society, London 144: 219–294.Google Scholar
  72. Wright, C.W., and W.J. Kennedy. 1995. The Ammonoidea of the lower chalk. Part IV. Monograph of the Palaeontographical Society, London 149: 295–319.Google Scholar
  73. Wright, C.W., and W.J. Kennedy. 1996. The Ammonoidea of the lower chalk. Part V. Monograph of the Palaeontographical Society, London 150: 320–403.Google Scholar
  74. von Zittel, K.A. 1884. Handbuch der Paläontologie, I. Abtheilung. Paläozoologie, Band 2, 1–893. München and Leipzig: R. Oldenbourg.Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Museum für Mineralogie und Geologie, Sektion PaläozoologieSenckenberg Naturhistorische Sammlungen DresdenDresdenGermany
  2. 2.Science DepartmentPayame Noor UniversityMashadIran

Personalised recommendations