Paläontologische Zeitschrift

, Volume 85, Issue 2, pp 125–142 | Cite as

A new kinosternoid from the Late Cretaceous Hell Creek Formation of North Dakota and Montana and the origin of the Dermatemys mawii lineage

  • Georgia E. Knauss
  • Walter G. Joyce
  • Tyler R. Lyson
  • Dean Pearson
Research Paper

Abstract

A nearly complete turtle shell from the Late Cretaceous (Maastrichtian) Hell Creek Formation of Slope County, North Dakota, represents the most complete remains to date of a Mesozoic kinosternoid turtle and a new species, Hoplochelys clark nov. sp. The new taxon is diagnosable from other representatives of Hoplochelys by the plesiomorphic placement of the humeral/femoral sulcus behind the hyo/hypoplastral suture and the autapomorphic development of an interrupted median (neural) keel. All six previously named Paleocene (Puercan and Torrejonian) representatives of Hoplochelys lack diagnostic characters and are synonymized as Hoplochelys crassa. A phylogenetic analysis reveals that Hoplochelys spp. and Agomphus pectoralis are most parsimoniously placed within Kinosternoidea along the phylogenetic stem of the extant Mesoamerican River Turtle Dermatemys mawii, extending that taxon’s stem lineage from the early Eocene to the late Maastrichtian. The two primary crown lineages of Kinosternoidea are thus known from the Mesozoic and split prior to the late Campanian. The presence of a thickened cruciform plastron, true costiform processes, only three inframarginals, and the reduction of the medial contact of the abdominals are synapomorphies of Chelydroidea, the clade formed by Chelydridae and Kinosternoidae.

Keywords

Hell Creek Formation North Dakota Maastrichtian Late Cretaceous Kinosternoidea Hoplochelys clark n. sp. Dermatemys mawii 

Kurzfassung

Eine fast komplette Schildkrötenschale, die in der spätkretazischen (Maastrichtium) Hell Creek Formation in Slope County, Norddakota, gefunden wurde, stellt den bisher vollständigsten mesozoischen Rest einer kinosternoideen Schildkröte dar und wird hier als neue Art Hoplochelys clark beschrieben. Anhand der plesiomorphen Lage des humero/femoralen Sulcus hinter der hyo/hypoplastralen Sutur und des autapomorphisch unterbrochenen medianen Kiels kann die neue Schildkröte von anderen Hoplochelys Arten unterschieden werden. Allen sechs bisher bekannten Arten aus dem Paläozän (Puercium und Torrejonium) fehlen diagnostische Merkmale. Daher werden sie als Hoplochelys crassa synonymisiert. Die phylogenetische Analyse ergibt, dass es am sparsamsten ist, Hoplochelys spp. und Agomphus pectoralis entlang der Stammlinie der heute lebenden Tabascoschildkröte Dermatemys mawii zu platzieren. Das Alter dieser Stammliniengruppe wird daher vom Früheozän ins Spätmaastrichtium zurückverlegt. Die zwei primären Stammlinien der Kinosternoidea sind somit aus dem Mesozoikum bekannt und spalteten sich voneinander vor dem Spätcampanium ab. Die Ausbildung eines verdickten, kreuzförmigen Plastrons, echte rippenartige Fortsätze des Nuchale, nur drei Inframarginalschilder und der Verlust des medianen Kontaktes der Abdominalscuta sind Synapomorphien des Monophylums Chelydroidea, welches von Chelydridae und Kinosternoidea gebildet wird.

Schlüsselwörter

Hell Creek Formation Norddakota Maastrichtium Oberkreide Kinosternoidea Hoplochelys clark n. sp. Dermatemys mawii 

Notes

Acknowledgments

We thank Dan Brinkman (YPM), Don Brinkman (TMP), Matt Carrano and Kevin de Queiroz (USNM), Pat Holroyd (UCMP), Carl Mehling (AMNH), Alan Resetar (FMNH), and Greg Watkins-Colwell (YPM) for access to material under their care. R. Sullivan is particularly thanked for providing us access to unpublished material collected by him in New Mexico. Thanks to the Horse Creek Grazing Association for allowing PTRM to collect and curate fossils from the dinosaur site PTRM V95018 where the holotype of H. clark was collected. John Brown and family are also thanked for allowing PTRM to conduct surveys of their land and to collect numerous fossils sites, including two that produced the specimens referred herein to H. clark. Additional referred specimens were collected from public lands managed by the Bureau of Land Management in Montana and North Dakota and the United States Forest Service in North Dakota; we would like to thank numerous staff members for their assistance with obtaining access. Yvonne Lichtenfelt is thanked for preparation of the holotype. Numerous PTRM and YPM students and volunteers helped recover the described material. Don Brinkman and Jim Parham helped improve the quality of this manuscript. Funding for this project was provided by the Doris O. and Samuel P. Welles Research Fund (UCMP) and the University of Iowa Department of Geoscience Littlefield Fund to G.K., a National Science Foundation Graduate Research Fellowship to T.R.L., and by a grant from the University of Tübingen to W.G.J.

References

  1. Barley, A.J., P.Q. Spiks, R.C. Thomson, and H.B. Shaffer. 2010. Fourteen nuclear genes provide phylogenetic resolution for difficult nodes in the turtle tree of life. Molecular Phylogenetics and Evolution 55: 1189–1194.CrossRefGoogle Scholar
  2. Baur, G. 1893. Notes on the classification of the Cryptodira. American Naturalist 27: 672–675.Google Scholar
  3. Bourque, J., J. Hutchison, P. Holroyd, and J.A. Bloch. 2008. A new kinosternoid (Testudines: Dermatemydidae) from the Paleocene-Eocene boundary of the Bighorn Basin, Wyoming, and its paleoclimatological implications. Journal of Vertebrate Paleontology 28(3, Suppl.): 55A.Google Scholar
  4. Brinkman, D., and R.R. de la Rosa. 2006. Nonmarine turtles from the Cerro del Pueblo Formation (Campanian), Coahuila State, Mexico. New Mexico Museum of Natural History and Science Bulletin 35: 229–233.Google Scholar
  5. Cope, E.D. 1868. On the origin of genera. Proceedings of the Academy of Natural Sciences of Philadelphia 1868: 242–300.Google Scholar
  6. Cope, E.D. 1888. Synopsis of the vertebrate fauna of the Puerco Series. Transactions of the American Philosophical Society 16: 298–361.CrossRefGoogle Scholar
  7. Ernst, C.H., and R.W. Barbour. 1989. Turtles of the world, vol. 290. Washington, DC: Smithsonian Institution Press.Google Scholar
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  9. Gaffney, E.S., and P.A. Meylan. 1988. A phylogeny of turtles. In The phylogeny and classification of the tetrapods, vol. 1, amphibians, reptiles, birds, ed. M.J. Benton, 157–219. Oxford: Clarendon Press.Google Scholar
  10. Gilmore, C.W. 1919. Reptilian faunas of the Torrejon, Puerco, and underlying upper Cretaceous Formations of San Juan County, New Mexico. United States Geologic Survey Professional Paper 119: 1–71.Google Scholar
  11. Gray, J.E. 1869. Notes on the families and genera of tortoises (Testudinata), and on the characters afforded by the study of their skulls. Proceedings of the Zoological Society of London 1869: 165–223.Google Scholar
  12. Gray, J.E. 1870. Supplement to the catalogue of shield reptiles in the collection of the British Museum, pt. 1, Testudinata (tortoises), vol. 120. London: Taylor and Francis.Google Scholar
  13. Hay, O.P. 1908a. The fossil turtles of North America, vol. 568. Washington, DC: Carnegie Institution of Washington.Google Scholar
  14. Hay, O.P. 1908b. Descriptions of five new species of North American fossil turtles, four of which are new. Proceedings of the United States National Museum 35: 161–169.Google Scholar
  15. Hay, O.P. 1910. Descriptions of eight new species of fossil turtles from west of the one hundredth meridian. Proceedings of the United States National Museum 38: 307–327.Google Scholar
  16. Hillis, D.M., and J.J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192.Google Scholar
  17. Holroyd, P., and J.H. Hutchison. 2002. Patterns of geographic variation in latest Cretaceous vertebrates: evidence from the turtle component. In The Hell Creek Formation and Cretaceous-Tertiary Boundary in the Great Plains: an integrated continental record of the end of the Cretaceous. Special paper 361, eds J.H. Hartman, K.R. Johnson, and D.J. Nichols, 177–190. Boulder, CO: The Geological Society of AmericaGoogle Scholar
  18. Hutchison, J.H. 1991. Early Kinosterninae (Reptilia: Testudines) and their phylogenetic significance. Journal of Vertebrate Paleontology 11: 145–167.CrossRefGoogle Scholar
  19. Hutchison, J.H. 2008. History of fossil Chelydridae. In Biology of the snapping turtle, ed. A.C. Steyermark, M.S. Finkler, and R. Brooks, 14–30. Baltimore: Johns Hopkins University Press.Google Scholar
  20. Hutchison, J.H., and J.D. Archibald. 1986. Diversity of turtles across the Cretaceous/Tertiary Boundary in northeastern Montana. Palaeogeography, Palaeoclimatology, Palaeoecology 55: 1–22.CrossRefGoogle Scholar
  21. Hutchison, J.H., and D.M. Bramble. 1981. Homology of the plastral scales of the Kinosternidae and related turtles. Herpetologica 37: 73–85.Google Scholar
  22. Hutchison, J.H., and P.A. Holroyd. 2003. Late Cretaceous and early Paleocene turtles of the Denver Basin, Colorado. Rocky Mountain Geology 38: 121–142.CrossRefGoogle Scholar
  23. Hutchison, J.H., and R.E. Weems. 1998. Paleocene turtle remains from South Carolina. In Paleobiology of the Williamsburg Formation (Black Mingo Group; Paleocene of South Carolina, USA, ed. A.E. Sanders. Transactions of the American Philosophical Society 88(4):165–195.Google Scholar
  24. Hutchison, J.H., J.G. Eaton, P.A. Holroyd, and M.B. Godwin. 1998. Larger vertebrates of the Kaiparowits Formation (Campanian) in the Grand Staircase-Escalante National Monument and adjacent areas. In Learning from the land. Grand Staircase-Escalante National Monument science symposium, eds, L.M. Hill, and J.J. Koselak, 391–398. Washington, DC: U.S. Department of the Interior, Bureau of Land Management.Google Scholar
  25. Johnson, K.R. 2002. The megaflora of the Hell Creek and lower Fort Union Formations in the western Dakotas: vegetational response to climate change, the Cretaceous-Tertiary boundary event, and rapid marine transgression. In The Hell Creek Formation and Cretaceous-Tertiary boundary in the Great Plains: an integrated continental record of the end of the Cretaceous. Special paper 361, eds J.H. Hartman, K.R. Johnson, and D.J. Nichols, 329–392. Boulder, CO: The Geological Society of America, BoulderGoogle Scholar
  26. Joyce, W.G. 2007. Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History 48: 3–102.CrossRefGoogle Scholar
  27. Joyce, W.G., J.F. Parham, and J.A. Gauthier. 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. Journal of Paleontology 78: 989–1013.CrossRefGoogle Scholar
  28. Linnaeus, C. 1758. Systema naturae, volume 1, 10th edition. Holmia: Laurentius Salvius.Google Scholar
  29. Lucas, S.G., S.M. Cather, P. Sealey, and J.H. Hutchison. 1989. Stratigraphy, paleontology, and depositional systems of the Eocene Cub Mountain Formation, Lincoln County, New Mexico—a preliminary report. New Mexico Geology 11: 11–17.Google Scholar
  30. Meylan, P.A., and E.S. Gaffney. 1989. The skeletal morphology of the Cretaceous Cryptodiran turtle, Adocus, and the relationships of the Trionychoidea. American Museum Novitates 2941: 1–60.Google Scholar
  31. Murphy, C.E., J.W. Hoganson, and K.R. Johnson. 2002. Lithostratigraphy of the Hell Creek Formation in North Dakota. In The Hell Creek Formation and Cretaceous-Tertiary boundary in the Great Plains: an integrated continental record of the end of the Cretaceous. Special paper 361, eds J.H. Hartman, K.R. Johnson, and D.J. Nichols, 9–34. Boulder, CO: The Geological Society of AmericaGoogle Scholar
  32. Near, T.J., P.A. Meylan, and H.B. Shaffer. 2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. The American Naturalist 165: 137–146.CrossRefGoogle Scholar
  33. Parham, J.F., C.R. Feldman, and J.L. Boore. 2006. The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon): description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA. BMC Evolutionary Biology 6–11: 1–11.Google Scholar
  34. Shaffer, H.B., P. Meylan, and M.L. McKnight. 1997. Test of turtle phylogeny: molecular, morphological, and paleontological approaches. Systematic Biology 46: 235–268.CrossRefGoogle Scholar
  35. Swofford, D.L. 2001. PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b, 10th edition. Sunderland: Sinauer Associates.Google Scholar
  36. Whetstone, K.N. 1978. A new genus of cryptodiran turtles (Testudinoidea, Chelydridae) from the Upper Cretaceous Hell Creek Formation of Montana. University of Kansas Science Bulletin 51: 539–563.Google Scholar
  37. Williams, E.E. 1950. Variation and selection in the cervical central articulations of living turtles. Bulletin of the American Museum of Natural History 94: 511–561.Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Georgia E. Knauss
    • 1
    • 2
  • Walter G. Joyce
    • 3
    • 4
  • Tyler R. Lyson
    • 5
    • 6
  • Dean Pearson
    • 7
  1. 1.SWCA Environmental Consultants, Inc.SheridanUSA
  2. 2.Department of GeoscienceUniversity of IowaIowa CityUSA
  3. 3.Institut für GeowissenschaftenUniversity of TübingenTübingenGermany
  4. 4.Division of Vertebrate PaleontologyYale Peabody Museum of Natural HistoryNew HavenUSA
  5. 5.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  6. 6.Marmarth Research FoundationMarmarthUSA
  7. 7.Pioneer Trails Region MuseumBowmanUSA

Personalised recommendations