Paläontologische Zeitschrift

, Volume 85, Issue 1, pp 103–107 | Cite as

A reassessment of the purported venom delivery system of the bird-like raptor Sinornithosaurus

  • Federico A. GianechiniEmail author
  • Federico L. Agnolín
  • Martín D. Ezcurra
Short Communication


Gong and colleagues recently described unusual traits in the dromaeosaurid Sinornithosaurus that were interpreted as the first evidence of a venomous dinosaur. This interpretation was based on extremely elongated maxillary teeth, morphologically similar to those present in poisonous snakes; labial grooves on maxillary and dentary tooth crowns; and an additional ornamented depression in the lateral surface of the maxillary bone (subfenestral fossa). A reappraisal of each of these morphological traits is provided here in light of comparisons with other theropod dinosaurs and previous discussions for inferring poisonous capabilities in fossil taxa. We fail to recognize unambiguous evidence supporting the presence of a venom delivery system in Sinornithosaurus. For example, the extremely elongated teeth seem to be a taphonomic artifact due to the displacement of teeth outside the alveoli; the labial grooves are present in a wide variety of theropods; and no strong evidence for the lodging of a venomous gland is recognized. In contrast, the cranial and dental anatomy of Sinornithosaurus is congruent with that of other dromaeosaurids. The weak support for a venomous Sinornithosaurus renders unlikely the ecological model proposed by Gong and colleagues for this predatory dinosaur.


Sinornithosaurus Dinosauria Dromaeosauridae Venomous system 



Museum für Naturkunde der Humboldt Universität, Berlin, Germany


Museo Carlos Ameghino, Cipolletti, Río Negro, Argentina


Museo Padre Molina Paleontología de Vertebrados, Río Gallegos, Santa Cruz, Argentina


University of California Museum of Paleontology, Berkeley, CA, USA


Gong und Kollegen haben kürzlich Strukturen des dromaeosauriden Sinornithosaurus beschrieben, die sie als ersten Hinweis für einen Dinosaurier mit giftigem Biss deuteten. Ihre Interpretation beruhte auf den stark verlängerten Oberkieferzähnen, die denen giftiger Schlangen ähneln; labialen Einkerbungen auf den Zahnkronen von Ober- und Unterkieferzähnen und einer zusätzlichen ornamentierten Depression in der seitlichen Oberfläche des Maxillare (subfenestrale Grube). Eine Neubewertung dieser morphologischen Merkmale wird hier im Vergleich mit anderen theropoden Dinosauriern und vorangehenden Diskussionen bezüglich der Feststellung von Giftigkeiten bei fossilen Taxa vorgenommen. Wir konnten keine eindeutige Evidenz finden, die das Vorhandensein eines Giftapparates bei Sinornithosaurus belegt. Zum Beispiel scheinen die langen Oberkieferzähne ein taphonomisches Artefakt bedingt durch die Dislozierung der Zähne aus ihren Alveolen zu sein und die labialen Einkerbungen auf den Zähnen sind bei Theropoden weit verbreitet. Zusätzlich konnte keine eindeutige Evidenz für die Existenz einer Giftdrüse gefunden werden. Die kraniale und dentale Anatomie von Sinornithosaurus ist kongruent mit der bei anderen Theropoden. Die unbegründete Interpretation macht das ökologische Model, das Gong und Kollegen für diesen räuberischen Dinosaurier entwarfen unwahrscheinlich.


Sinornithosaurus Dinosauria Dromaeosauridae Giftapparat 



Several people allowed the study of specimens under their care: K. Padian, P. Holroyd, and R. Irmis (UCMP), D. Schwarz-Wings (MB), and C. Muñoz (MPCA). This research was partially funded by the Samuel Welles Fund Grant of the UCMP, the Jurassic Foundation, and the Jackson School Travel Grant of the Society of Vertebrate Paleontology (to M. Ezcurra). We thank the reviews conducted by X. Xu, P. J. Makovicky, and S. L. Brusatte, which helped to improve the quality of the manuscript.


  1. Currie, P.J., and D.J. Varricchio. 2004. A new dromaeosaurid from the Horseshoe Canyon Formation (Upper Cretaceous) of Alberta, Canada. In Feathered dinosaurs, ed. P.J. Currie, E.B. Koppelhus, M.A. Shugar, and J.L. Wright, 112–132. Bloomington: Indiana University Press.Google Scholar
  2. Currie, P.J., J.K. Rigby, and R.E. Sloan. 1990. Theropod teeth from the Judith River Formation. In Dinosaur systematics: Perspectives and approaches, ed. K. Carpenter, and P.J. Currie, 107–125. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Folinsbee, K.E., J. Müller, and R.R. Reisz. 2007. Canine grooves: Morphology, function, and relevance to venom. Journal of Vertebrate Paleontology 27: 547–551.CrossRefGoogle Scholar
  4. Fox, R.C., and C.S. Scott. 2005. First evidence of a venom delivery apparatus in extinct mammals. Nature 435: 1091–1093.CrossRefGoogle Scholar
  5. Fry, B.G., N. Vidal, J.A. Norman, F.J. Vonk, H. Scheib, S.F.R. Ramjan, S. Kuruppu, K. Fung, S.B. Hedges, M.K. Richardson, W.C. Hodgson, V. Ignjatovic, R. Summerhayes, and E. Kochva. 2006. Early evolution of the venom system in lizards and snakes. Nature 439: 584–588.CrossRefGoogle Scholar
  6. Gianechini, F.A., Apesteguía, S., and Makovicky, P.J. 2009. The unusual dentition of Buitreraptor gonzalezorum (Theropoda: Dromaeosauridae), from Patagonia, Argentina: New insights on the unenlagiine teeth. XXIV Jornadas Argentinas de Paleontología de Vertebrados Abstracts Book: 36.Google Scholar
  7. Gong, E., L.D. Martin, D.A. Burnham, and A.R. Falk. 2010. The birdlike raptor Sinornithosaurus was venomous. Proceedings of the National Academy of Sciences 107: 766–768.CrossRefGoogle Scholar
  8. Hurum, J., Z.-X. Luo, and Z. Kielan-Jaworowska. 2006. Were mammals originally venomous? Acta Palaeontologica Polonica 51: 1–11.Google Scholar
  9. Hwang, S.H., M.A. Norell, J. Qiang, and G. Keqin. 2002. New specimens of Microraptor zhaoianus (Theropoda: Dromaeosauridae) from northeastern China. American Museum Novitates 3381: 1–44.CrossRefGoogle Scholar
  10. Morhardt, A., M. Bonnan, and T. Keillor. 2009. Dinosaur smiles: Correlating premaxilla, maxilla, and dentary foramina counts with extra-oral structures in amniotes and its implications for dinosaurs. Journal of Vertebrate Paleontology 29: 152A.Google Scholar
  11. Novas, F.E., M.D. Ezcurra, and A. Lecuona. 2008. Orkoraptor burkei nov. gen. et nov. sp., a large basal coelurosaurian theropod from the Maastrichtian Pari Aike Formation, Southern Patagonia, Argentina. Cretaceous Research 29: 468–480.CrossRefGoogle Scholar
  12. Nowak, R. 1999. Walker’s mammals of the world. Baltimore: Johns Hopkins University Press.Google Scholar
  13. Nydam, R.L. 2000. A new taxon of helodermatid-like lizard from the Albian-Cenomanian of Utah. Journal of Vertebrate Paleontology 20: 285–294.CrossRefGoogle Scholar
  14. Ostrom, J.H. 1969. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bulletin of the Peabody Museum of Natural History 30: 1–165.Google Scholar
  15. Pournelle, G.H. 1968. Classification, biology, and description of the venom apparatus of insectivores of the genera Solenodon, Neomys and Blarina. In Venomous animals and their venoms, ed. W. Bücherl, E. Buckley, and V. Deulofeu, 31–42. New York: Academic Press.Google Scholar
  16. Rauhut, O.W.M. 2004. Provenance and anatomy of Genyodectes serus, a large-toothed ceratosaur (Dinosauria: Theropoda) from Patagonia. Journal of Vertebrate Paleontology 24: 894–902.CrossRefGoogle Scholar
  17. Reynoso, V.-H. 2005. Possible evidence of a venom apparatus in a Middle Jurassic sphenodontian from the Huizachal Red Beds of Tamaulipas, México. Journal of Vertebrate Paleontology 25: 646–654.CrossRefGoogle Scholar
  18. Sues, H.-D. 1991. Venom-conducting teeth in a Triassic reptile. Nature 351: 141–143.CrossRefGoogle Scholar
  19. Sues, H.-D. 1996. A reptilian tooth with apparent venom canals from the Chinle Group (Upper Triassic) of Arizona. Journal of Vertebrate Paleontology 16: 571–572.CrossRefGoogle Scholar
  20. Szaniawski, H. 2009. The earliest known venomous animals recognized among conodonts. Acta Palaeontologica Polonica 54: 669–676.CrossRefGoogle Scholar
  21. Vidal, N., and S.B. Hedges. 2005. The phylogeny of squamates reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus Biologies 328: 1000–1008.Google Scholar
  22. Welles, S.P. 1984. Dilophosaurus wetherelli (Dinosauria, Theropoda) osteology and comparisons. Palaeontographica Abteilung A 185: 85–180.Google Scholar
  23. Witmer, L.M. 1997. The evolution of the antorbital cavity of archosaurs: A study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. Journal of Vertebrate Paleontology 17(Suppl 1): 1–73.CrossRefGoogle Scholar
  24. Xu, X., and X.-C. Wu. 2001. Cranial morphology of Sinornithosaurus millenii Xu et al. 1999 (Dinosauria: Theropoda: Dromaeosauridae) from the Yixian Formation of Liaoning, China. Canadian Journal of Earth Sciences 38: 1739–1752.CrossRefGoogle Scholar
  25. Xu, X., Z. Zhou, and X. Wang. 2000. The smallest known non-avian theropod dinosaur. Nature 408: 705–708.CrossRefGoogle Scholar
  26. Zheng, X., X. Xu, H. You, Q. Zhao, and Z. Dong. 2010. A short-armed dromaeosaurid from the Jehol Group of China with implications for early dromaeosaurid evolution. Proceeding of the Royal Society of London B 277: 211–217.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Federico A. Gianechini
    • 1
    • 2
    Email author
  • Federico L. Agnolín
    • 1
    • 3
  • Martín D. Ezcurra
    • 3
    • 4
  1. 1.Fundación de Historia Natural “Félix de Azara”, Departamento de Ciencias Naturales y AntropologíaCEBBAD-Universidad MaimónidesBuenos AiresArgentina
  2. 2.CONICET, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
  3. 3.Laboratorio de Anatomía Comparada y Evolución de los VertebradosMuseo Argentino de Ciencias Naturales “B. Rivadavia”Buenos AiresArgentina
  4. 4.Sección de Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales “B. Rivadavia”Buenos AiresArgentina

Personalised recommendations