Paläontologische Zeitschrift

, Volume 83, Issue 2, pp 267–291

First record of Pojetaia runnegari Jell, 1980 and Fordilla Barrande, 1881 from the Middle East (Taurus Mountains, Turkey) and critical review of Cambrian bivalves

Research Paper

Abstract

Cambrian bivalves from the Middle East are reported here for the first time. They come from early “Middle Cambrian” and latest “Early Cambrian” limestones of the lower Çal Tepe Formation at the type locality (near Seydişehir, western Taurides). The majority of the new findings consists of Pojetaia runnegari Jell, 1980, but a few specimens of Fordilla sp. represent the first report of this genus from “Middle Cambrian” strata. Based on a compilation of the hitherto reported, but mostly revised Cambrian bivalves, the today widely accepted taxa are discussed. The genera Pojetaia Jell, 1980 and Fordilla Barrande, 1881 are critically evaluated, and three valid species are included in Pojetaia: P. runnegari Jell, 1980, P. sarhroensis Geyer and Streng, 1998, and—with limitations—P. ostseensis Hinz-Schallreuter, 1995. Fordilla also includes three species: F. troyensis Barrande, 1881, F. sibirica Krasilova, 1977, and F. germanica Elicki, 1994. The Cambrian genera Tuarangia MacKinnon, 1982, Camya Hinz-Schallreuter, 1995, and Arhouriella Geyer and Streng, 1998 most probably belong to the class Bivalvia. Palaeoecologically, the Cambrian bivalves of the Western Perigondwanan shelf seem to occur in a relatively small window of low-energy, subtidal, open-marine, warm-water conditions on a muddy carbonate ramp or platform with reduced sedimentation rate. The frequently interpreted infaunal mode of life of Pojetaia and Fordilla is questioned by observations of similarly organized modern bivalves. The palaeogeographical distribution of Pojetaia and Fordilla is discussed with respect to their early ontogeny and to differences in the recent state of knowledge on shelly fossils from Cambrian carbonate successions of Perigondwana.

Keywords

Cambrian Bivalvia Pelecypoda small shelly fossils Çal Tepe Formation Turkey 

Zusammenfassung

Erstmals für den Mittleren Osten werden Funde kambrischer Muscheln gemeldet. Sie entstammen Kalksteinen untermittelkambischer und höchstunterkambrischer Bereiche der tieferen Çal Tepe Formation an der Typuslokalität Çal Tepe (nahe Seydişehir) im westlichen Taurusgebirge. Die Muscheln werden überwiegend durch die Art Pojetaia runnegari Jell, 1980 und untergeordnet durch Fordilla sp. repräsentiert. Letztere stellt den ersten Nachweis dieser Gattung im „Mittelkambrium” überhaupt dar. Ausgehend von einer Zusammenstellung der bisher beschriebenen und größtenteils wieder revidierten kambrischen Muscheln, werden die heute weitgehend akzeptierten Formen diskutiert. Insbesondere für die Gattungen Pojetaia Jell, 1980 und Fordilla Barrande, 1881 und deren Arten werden taxonomisch verwendbare Merkmale kritisch bewertet. Danach ergeben sich im Bestand von Pojetaia folgende gültige Arten: P. runnegari Jell, 1980, P. sarhroensis Geyer and Streng, 1998 und—mit Einschränkung—P. ostseensis Hinz-Schallreuter, 1995. In der Gattung Fordilla werden die Arten F. troyensis Barrande, 1881, F. sibirica Krasilova, 1977 und F. germanica Elicki, 1994 geführt. Als höchstwahrscheinlich den Bivalvia zuzuordnende, weitere kambrische Gattungen werden Tuarangia MacKinnon, 1982, Camya Hinz-Schallreuter, 1995 und Arhouriella Geyer and Streng, 1998 angesehen. Paläoökologisch scheinen die kambrischen Muscheln des Perigondwana-Schelfs innerhalb eines relativ schmalen Fensters aufzutreten, welches niedrigenergetische, subtidale, offenmarine Warmwasserverhältnisse auf einer feinkörnigen Karbonatrampe oder -plattform mit geringer Sedimentationsrate repräsentiert. Die zumeist interpretierte, infaunale Lebensweise von Pojetaia und Fordilla erscheint im Vergleich mit ähnlich gebauten rezenten Muscheln als nicht hinreichend belegt. Die paläogeographische Verbreitung von Pojetaia und Fordilla wird mit Blick auf deren frühe Ontogenese und hinsichtlich des Bearbeitungsstandes von Schalenfossilien kambrischer Karbonatfolgen Perigondwanas diskutiert.

Schlüsselwörter

Kambrium Bivalvia Pelecypoda small shelly Fossilien Çal Tepe Formation Türkei 

References

  1. Alexander, E.M., J.B. Jago, A.Yu. Rozanov, and A.Yu. Zhuravlev. 2001. The Cambrian biostratigraphy of the Stansbury basin. Russian Academy of Sciences, Transactions of the Palaeontological Institute 282: 1–344.Google Scholar
  2. Álvaro, J.J., J.M. Rouchy, T. Bechstädt, A. Boucot, F. Boyer, F. Debrenne, E. Moreno-Eiris, A. Perejón, and E. Vennin. 2000. Evaporitic constraints on the southward drifting of the western Gondwana margin during Early Cambrian times. Palaeogeography, Palaeoclimatology, Palaeoecology 160: 105–122.CrossRefGoogle Scholar
  3. Álvaro, J.J., O. Elicki, G. Geyer, A.W.A. Rushton, and J.H. Shergold. 2003. Paleogeographic control on the Cambrian trilobite immigration and evolutionary patterns reported in the western Gondwana margin. Palaeogeography, Palaeoclimatology, Palaeoecology 195(1–2): 5–35.Google Scholar
  4. Babcock, L.E., and S. Peng. 2007. Cambrian chronostratigraphy: Current state and future plans. Palaeogeography, Palaeoclimatology, Palaeoecology 254(1–2): 62–66.CrossRefGoogle Scholar
  5. Babin, C. 1993. A propos d’un prétendu mollusque bivalve du Cambrien de Belgique. Annales de la Société géologique de Belgique 116: 13–14.Google Scholar
  6. Barrande, J. 1881. Systême Silurien du centre de la Bohême, Vol. 6, Acéphalés, Paris and Prague, 342 p.Google Scholar
  7. Bengtson, S., S. Conway Morris, B.J. Cooper, P.A. Jell, and B.N. Runnegar. 1990. Early Cambrian fossils from South Australia. Memoir of the Association of Australasian Palaeontologists 9: 1–364.Google Scholar
  8. Berg-Madsen, V. 1987. Tuarangia from Bornholm (Denmark) and similarities in Baltoscandian and Australasian late Middle Cambrian faunas. Alcheringa 11: 245–259.CrossRefGoogle Scholar
  9. Boardman, R.S., A.H. Cheetham, and A.J. Rowell. 1987. Fossil invertebrates. Oxford: Blackwell, 713 p.Google Scholar
  10. Brock, G.A., M.J. Engelbretsen, J.B. Jago, P.D. Kruse, J.R. Lauri, J.H. Shergold, G.R. Shi, and J.E. Sorauf. 2000. Palaeobiogeographic affinities of Australian Cambrian faunas. Memoir of the Association of Australasian Palaeontologists 23: 1–61.Google Scholar
  11. Carter, R.M. 1971. Revision of Arenig Bivalvia from Ramsey Island, Pembrokeshire. Palaeontology 14: 250–261.Google Scholar
  12. Carter, J.G., D.C. Campbell, and M.R. Campbell. 2000. Cladistic perspectives on early bivalve evolution. Geological Society of London Special Publications 177: 47–79.CrossRefGoogle Scholar
  13. Chaffee, C., and D.R. Lindberg. 1986. Larval biology of Early Cambrian molluscs: the implication of small body size. Bulletin of Marine Science 39: 536–549.Google Scholar
  14. Chen, Yi-yuan, and Zi-qiang Wang. 1985. A bivalve from the Lower Cambrian Xinji Formation in western Henan province (in Chinese with English abstract). [Diqiu kexue, Wuhan Dizhi Xueyuan xuebao] Earth Science Journal of Wuhan College of Geology 10: 27–29.Google Scholar
  15. Cocks, L.R.M., and T.H. Torsvik. 2006. European geography in a global context from the Vendian to the end of the Palaeozoic. Geological Society of London, Memoirs 32: 83–95.CrossRefGoogle Scholar
  16. Courjault-Radé, P., F. Debrenne, and A. Gandin. 1992. Palaeogeographic and geodynamic evolution of the Gondwana continental margins during the Cambrian. Terra Nova 4: 657–667.CrossRefGoogle Scholar
  17. Dean, W.T. 1980. The Ordovician system in the Near and Middle East. Correlation chart and explanatory notes. International Union of Geological Sciences, Publications 2: 1–22.Google Scholar
  18. Dean, W.T. 2005. Trilobites from the Çal Tepe Fm. (Cambrian), Near Seydişehir, Central Taurides, Southwestern Turkey. Turkish Journal of Earth Sciences 14: 1–71.Google Scholar
  19. Dean, W.T., and O. Monod. 1970. The Lower Palaeozoic stratigraphy and faunas of the Taurus Mountains near Beyşehir, Turkey. I. Stratigraphy. Bulletin of the British Museum (Geology) 19: 411–426.Google Scholar
  20. Dean, W.T., and O. Monod. 1995. Geological excursion: Seydişehir—Çal Tepe area. IGCP Project 351 “Early Paleozoic Evolution in NW Gondwana”. Unpublished excursion guide book, 17–21.Google Scholar
  21. Delgado, J.F.N. 1904. Faune Cambrienne du Haut-Alemtejo (Portugal). Communicações da Commissão do Serviço Geológico de Portugal 5: 307–374.Google Scholar
  22. Elicki, O. 1994. Lower Cambrian carbonates from eastern Germany: Palaeontology, stratigraphy and palaeogeography. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 191(1): 69–93.Google Scholar
  23. Elicki, O. 1998. First report of Halkieria and enigmatic globular fossils from the Central European Marianian (Lower Cambrian, Görlitz Syncline, Germany). Revista Española de Paleontología, No. extr. Homenaje al Prof. Gonzalo Vidal, 51–64.Google Scholar
  24. Elicki, O. 1999. Palaeoecological significance of calcimicrobial communities during ramp evolution: An example from the lower Cambrian of Germany. Facies 41: 27–40.CrossRefGoogle Scholar
  25. Elicki, O. 2000. Die kambrische “Görlitz-Fauna”: Charakteristik und Bedeutung für die stratigraphische und paläogeographische Rekonstruktion Mitteleuropas. Zeitschrift für geologische Wissenschaften 28(1–2): 11–32.Google Scholar
  26. Elicki, O. 2005. The utility of late early to middle Cambrian small shelly fossils from the western Mediterranean. Geosciences Journal 9(2): 161–171.CrossRefGoogle Scholar
  27. Elicki, O. 2006. Microbiofacies analysis of Cambrian offshore carbonates from Sardinia (Italy): environment reconstruction and development of a drowning carbonate platform. Carnet de Géologie/Notebooks on Geology 2006/01: 1–22.Google Scholar
  28. Elicki, O. 2007. Paleontological data from the Early Cambrian of Germany and paleobiogeographical implications for the configuration of central Perigondwana. In The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision, eds. Linnemann, U., R.D. Nance, P. Kraft, and G. Zulauf, GSA Special Paper 423: 143–152.Google Scholar
  29. Elicki, O., and F. Debrenne. 1993. The Archaeocyatha of Germany. Paläontologie, Stratigraphie, Fazies (1). Freiberger Forschungshefte C 450: 3–40.Google Scholar
  30. Elicki, O., and G.L. Pillola. 2004. Cambrian microfauna and palaeoecology of the Campo Pisano Formation at Gutturu Pala (Iglesiente, SW Sardinia, Italy). Bolletino della Società Paleontologica Italiana 43(3): 383–401.Google Scholar
  31. Elicki, O., and J. Schneider. 1992. Lower Cambrian (Atdabanian/Botomian) Shallow-marine Carbonates of the Görlitz Synclinorium (Saxony/Germany). Facies 26: 55–66.CrossRefGoogle Scholar
  32. Elicki, O., and Th. Wotte. 2003. Cambroclaves from the Cambrian of Sardinia (Italy) and Germany: constraints for the architecture of western Gondwana and the palaeogeographical and palaeoecological potential of cambroclaves. Palaeogeography, Palaeoclimatology, Palaeoecology 195: 55–71.CrossRefGoogle Scholar
  33. Elicki, O., S. Gürsu, and M.C. Göncüoğlu. 2007. The Cambrian of the Western Taurides (Turkey) and its relation to the Perigondwanan realm. In Fossile Ökosysteme, ed. O. Elicki and J.W. Schneider, vol. 36, 27–28. Wissenschaftliche Mitteilungen des Institutes für Geologie der TU Bergakademie Freiberg.Google Scholar
  34. Esakova, N.V. and E.A. Zhegallo. 1996. Biostratigrafiya i fauna nizhnego kembriya Mongolii [Lower Cambrian biostratigraphy and fauna of Western Mongolia] (in Russian). Trudy Sovmestnaya Rossiysko-Mongolskaya paleontologicheskaya ekspeditsiya [The Join Russian-Mongolian Palaeontological Expedition] 46: 214.Google Scholar
  35. Fernández-Remolar, D.C. 2001. Latest Neoproterozoic to Middle Cambrian body fossil record in Spain (exclusive of trilobites and archaeocyaths) and their stratigraphic significance. GFF 123: 73–80.Google Scholar
  36. Fraipont, C. 1910. Modiolopsis ?? Malaisii Ch. Fraip. Lamellibranche nouveau du Revinien Belge (Cambrien moyen). Annales de la Société géologique de Belgique 37: M5–8.Google Scholar
  37. Geyer, G., and O. Elicki. 1995. Lower Cambrian trilobites from the Görlitz Synclinorium (Germany)—review and new results. Paläontologische Zeitschrift 69(1/2): 87–119.Google Scholar
  38. Geyer, G., and E. Landing. 1995. The Cambrian of the Moroccan Atlas regions. Beringeria, Special Issue 2: 7–46.Google Scholar
  39. Geyer, G., and E. Landing. 2004. A unified Lower–Middle Cambrian chronostratigraphy for West Gondwana. Acta Geologica Polonica 54: 179–218.Google Scholar
  40. Geyer, G. and M. Streng. 1998. Middle Cambrian pelecypods from the Anti-Atlas, Morocco. Revista Española de Paleontología, No. extr. Homenaje al Prof. Gonzalo Vidal: 83–96.Google Scholar
  41. Göncüoğlu, M.C. 1997. Distribution of Lower Paleozoic rocks in the Alpine terranes of Turkey: Paleogeographic constraints. In Early Paleozoic in NW Gondwana, ed. M.C. Göncüoğlu and A.S. Derman, Vol. 3, 13–23. Turkish Association Petroleum Geologists, Special Publication.Google Scholar
  42. Göncüoğlu, M.C., K. Dirik, and H. Kozlu. 1997. General characteristics of pre-Alpin and Alpin Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Annales de Géologie de Pays Hellenique 37: 515–536.Google Scholar
  43. Göncüoğlu, M.C., Y. Göncüoğlu, H.W. Kozur, and H. Kozlu. 2004. Paleozoic stratigraphy of the Geyik Dağı unit in the Eastern Taurides (Turkey): New age data and implications for Gondwanan evolution. Geologica Carpathica 55(6): 433–447.Google Scholar
  44. Gozalo, R., E. Liñan, M.E. Dies Álvarez, J.A. Gámez Vintaned, and E. Mayoral. 2007. The Lower–Middle Cambrian boundary in the Mediterranean subprovinve. GSA Special Paper 423: 359–373.Google Scholar
  45. Grabau, A.W. 1900. Palaeontology of the Cambrian terranes of the Boston Basin. Occasional Papers of the Boston Society of Natural History 4: 601–694.Google Scholar
  46. Gubanov, A.P., D.C. Fernández-Remolar, and J.S. Peel. 2004. Early Cambrian molluscs from Sierra de Córdoba (Spain). Geobios 37: 199–215.CrossRefGoogle Scholar
  47. Gürsu, S., and M.C. Göncüoğlu. 2001. Characteristic features of the Late Precambrian felsic magmatism in Western Anatolia: Implications for the Pan-African evolution in NW Perigondwana. Gondwana Research 4: 169–170.CrossRefGoogle Scholar
  48. Gürsu, S., and M.C. Göncüoğlu. 2008. Petrogenesis and geodynamic evolution of the Late Neoproterozoic post-collisional felsic magmatism in NE Afyon area, western central Turkey. Geological Society of London, Special Publications 297: 409–431.CrossRefGoogle Scholar
  49. Gürsu, S., H. Kozlu, M.C. Göncüoğlu, and N. Turhan. 2003. Correlation of the basement rocks and lower Palaezoic covers of the western parts of the central Taurides. Turkish Association of Petroluem Petrologists Bulletin 15: 129–153.Google Scholar
  50. Gürsu, S., M.C. Göncüoğlu, and H. Bayhan. 2004. Geology and geochemistry of the pre-Early Cambrian rocks in Sandıklı area: Implications for the Pan-African evolution in NW Gondwanaland. Gondwana Research 7(4): 923–935.CrossRefGoogle Scholar
  51. Hall, J. 1847. Containing descriptions of the organic remains of the lower division of the New York system (equivalent of the Lower Silurian rocks of Europe). Paleontology of New York 1: 1–338.Google Scholar
  52. Havlíček, V., and J. Křiž. 1978. Middle Cambrian Lamellodonta simplex Vogel: “Bivalve” turned brachiopod Trematobolus simplex (Vogel). Journal of Paleontology 52(5): 972–975.Google Scholar
  53. He, Ting-gui, and Fang Pei. 1985. The discovery of bivalves from the Lower Cambrian Xinji Formation in Fangcheng County, Henan Province (in Chinese with English abstract). [Chengdu Dizhi Xueyuan xuebao] Journal of the Chengdu College of Geology 12(1): 61–66.Google Scholar
  54. Hicks, H. 1873. On the Tremadoc rocks in the neighbourhood of St. David’s, South Wales and their fossil content. Quarterly Journal of the Geological Society of London 29: 39–52.CrossRefGoogle Scholar
  55. Hinz-Schallreuter, I. 1995. Muscheln (Pelecypoda) aus dem Mittelkambrium von Bornholm. Geschiebekunde aktuell 11(3): 71–84.Google Scholar
  56. Jell, P.A. 1980. Earliest known bivalve on Earth—A new Early Cambrian genus from South Australia. Alcheringa 4: 233–239.CrossRefGoogle Scholar
  57. Jermak, V.V. 1986. Rannekembriskije fordillidy (Bivalvia) severa sibirskoj platformy [Early Cambrian fordillids (Bivalvia) from the northern Siberian Platform]. In Biostratigrafiya i paleontologiya kembriya severnoj asii [Cambrian biostratigraphy and palaeontology of North Asia] (in Russian), ed. I.T. Zhuravleva, Vol. 669, 183–188. Trudy instituta geologii I geofiziki, Akademiya Nauk SSR Sibirskoe otdelenie [Transactions of the Institute of Geology and Geophysics, Siberian branch, Academy of Sciences of the USSR].Google Scholar
  58. Jermak, V.V. 1988. Stroenie zamochnogo apparata, mikrostruktura rakoviny i obraz zhizni rannekembriskich fordillid (Bivalvia) [Construction of hinge apparatus, shell microstructure, and way of living of Early Cambrian fordillids (Bivalvia)] (in Russian). Trudy instituta geologii I geofiziki, Akademiya Nauk SSR Sibirskoe otdelenie [Transactions of the Institute of Geology and Geophysics, Siberian branch, Academy of Sciences of the USSR] 720: 179–184.Google Scholar
  59. Kouchinsky, A.V. 2001. Mollusks, hyoliths, stenothecoids, and coeloscleritophorans. In The Ecology of the Cambrian radiation, ed. A.Yu. Zhuravlev and R. Riding, 525 p. New York: Columbia University Press.Google Scholar
  60. Krasilova, I.N. 1977. Fordillidy (Bivalvia) iz nizhnego paleozoya sibirskoj platformy [Fordillids (Bivalvia) from the early Palaeozoic of the Siberian Platform]. Paleontologicheskij Zhurnal 2: 42–48.Google Scholar
  61. Krasilova, I.N. 1987. Pervye predstaviteli dvustvorchatykh molluskov [The oldest representatives of the bivalved molluscs]. Paleontologicheskij Zhurnal 21: 24–30.Google Scholar
  62. Křiž, J. 2007. Origin, evolution and classification of the new superorder Nepiomorphia (Mollusca, Bivalvia, Lower Palaeozoic). Palaeontology 50(6): 1341–1365.CrossRefGoogle Scholar
  63. Landing, E. 1991. Upper Precambrian through Lower Cambrian of Cape Breton Island: Faunas, paleoenvironments, and stratigraphic revision. Journal of Paleontology 65(4): 570–595.Google Scholar
  64. Landing, E., and S.R. Westrop. 1997. Avalonia 1997—The Cambrian Standard: Cambrian faunal sequence and depositional history of Avalonian Newfoundland and New Brunswick. New York State Museum Bulletin 492: 1–92.Google Scholar
  65. Landing, E., G. Geyer, and K.E. Bartowski. 2002. Latest Early Cambrian small shelly fossils, trilobites, of the Hatch Hill dysaerobic interval on the Québec continental slope. Journal of Paleontology 76(2): 287–305.CrossRefGoogle Scholar
  66. Li, Yuwen, and Benhe Zhou. 1986. Discovery of old microbivalves in China and its significance (in Chinese with English abstract). Scientia geologica Sinica [Chinese Journal of Geology = Dizhi kexue] 1: 38–45.Google Scholar
  67. Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Laurentii Salvii, Holmiae (Stockholm): 1–823.Google Scholar
  68. Logan, B.W., R. Rezak, and R.N. Ginsburg. 1964. Classification and environmental significance of algal stromatolites. Journal of Geology 72: 68–83.CrossRefGoogle Scholar
  69. MacKinnon, D.I. 1982. Tuarangia paparua n. gen. and n. sp. A late Middle Cambrian bivalve from New Zealand. Journal of Paleontology 56(3): 589–598.Google Scholar
  70. MacKinnon, D.I. 1985. New Zealand late Middle Cambrian molluscs and the origin of Rostroconchia and Bivalvia. Alcheringa 9(1): 65–81.CrossRefGoogle Scholar
  71. Matthew, G.F. 1899. The Etcheminian fauna of Smith Sound, Newfoundland. Transactions of the Royal Society of Canada (Section IV) 2(5): 97–123.Google Scholar
  72. McKerrow, W.S., C.R. Scotese, and M.D. Brasier. 1992. Early Cambrian continental reconstructions. Journal of the Geological Society of London 149: 599–606.CrossRefGoogle Scholar
  73. Meert, J.G., and B.S. Liebermann. 2004. A Palaeomagnetic and Palaeobiogeographical perspective on latest Neoproterozoic and Early Cambrian tectonic events. Journal of the Geological Society of London 161: 477–487.Google Scholar
  74. Monod, O., H. Kozlu, J.-F. Ghienne, W.T. Dean, Y. Günay, A. Le Hérissé, F. Paris, and M. Robardet. 2003. Late Ordovician glaciation in southern Turkey. Terra Nova 15: 249–257.CrossRefGoogle Scholar
  75. Morris, N.J. 1990. Early radiation of the mollusca. In Major evolutionary radiations, ed. P.D Taylor. and G.P. Larwood, Vol. 42, 73–90. Systematics Association Special.Google Scholar
  76. Özgül, N. 1976. Some geological aspects of the Taurus orogenic belt (in Turkish with English abstract). Bulletin of the Geological Society of Turkey [Türkiye Jeoloji Kurumu bülteni] 19: 65–78.Google Scholar
  77. Özgül, N., and H. Kozlu. 2002. Kozan-Feke (Doğu Toroslar) yöresinin stratigrafisi ve yapısal konumu ile ilgili bulgular (in Turkish with English abstract). Turkish Association of Petroleum Geologists Bulletin 14: 1–36.Google Scholar
  78. Parkhaev, P.Yu. 2001. Molluscs and siphonoconchs.In The Cambrian biostratigraphy of the Stansbury basin, ed. E.M. Alexander, J.B. Jago, A.Yu. Rozanov, and A.Yu. Zhuravlev, Vol. 282, 133–210. Russian Academy of Sciences, Transactions of the Palaeontological Institute.Google Scholar
  79. Perejón, A. 1994. Palaeogeographic and biostratigraphic distribution of Archaeocyatha in Spain. Courier Forschungsinstitut Senckenberg 172: 341–354.Google Scholar
  80. Peterson, K.J. 2005. Macroevolutionary interplay between planktic larvae and benthic predators. Geology 33(12): 929–932.CrossRefGoogle Scholar
  81. Pillola, G.L. 1991. Trilobites de Cambrien inférieur du SW de la Sardaigne, Italie. Palaeontographica Italica 78: 1–174.Google Scholar
  82. Pojeta Jr, J.P. 1975. Fordilla troyensis Barrande and early bivalve phylogeny. Bulletins of American Paleontology 63: 363–384.Google Scholar
  83. Pojeta Jr, J.P. 2000. Cambrian pelecypoda (Mollusca). American Malacological Bulletin 15(2): 157–166.Google Scholar
  84. Pojeta Jr, J.P., B. Runnegar, and J. Křiž. 1973. Fordilla troyensis: The Oldest Known Pelecypod. Science 180: 866–868.CrossRefGoogle Scholar
  85. Qian, Yi. 2001. Yangtzedonta and the early evolution of shelled molluscs. Chinese Science Bulletin [Kexue tongbao] 46(24): 2103–2106.CrossRefGoogle Scholar
  86. Reid, R.G.B., R.F. McMahon, D.ó. Foighil, and R. Finnigan. 1992. Anterior inhalant currents and pedal feeding in bivalves. The Veliger 35(2): 93–104.Google Scholar
  87. Runnegar, B. 1983. Molluscan phylogeny revisited. Memoir of the Association of Australasian Palaeontologists 1: 121–144.Google Scholar
  88. Runnegar, B. 1990. Cyanobacteria. In Early Cambrian fossils from South Australia, ed. S. Bengtson, S. Conway Morris, B.J. Cooper, P.A. Jell, and B.N. Runnegar, Vol. 9, 20–24. Association of Australasian Palaeontologists Memoir.Google Scholar
  89. Runnegar, B., and C. Bentley. 1983. Anatomy, ecology and affinities of the Australian Early Cambrian bivalve Pojetaia runnegari Jell. Journal of Paleontology 57(1): 73–92.Google Scholar
  90. Runnegar, B., and P.A. Jell. 1976. Australian Middle Cambrian molluscs and their bearing on early molluscan evolution. Alcheringa 1: 109–138.CrossRefGoogle Scholar
  91. Runnegar, B., and J.P. Pojeta Jr. 1992. The earliest bivalves and their Ordovician descendants. American Malacological Bulletin 9(2): 117–122.Google Scholar
  92. Rushton, A.W.A., and J.H. Powell. 1998. A review of the stratigraphy and trilobite faunas from the Cambrian Burj Formation in Jordan. Bulletin of the Natural History Museum (Geology) 54(2): 131–146.Google Scholar
  93. Sarmiento, G.N., D. Fernández-Remolar, and M.C. Göncüoğlu. 2001. Cambrian small shelly fossils from the Çal Tepe formation, Taurus Mountains, Turkey. Coloquios de Paleontologia 52: 117–134.Google Scholar
  94. Schneider, J.A. 2001. Bivalve systematics during the 20th century. Journal of Paleontology 75(6): 1119–1127.CrossRefGoogle Scholar
  95. Sdzuy, K., E. Liñan, and R. Gozalo. 1999. The Leonian Stage (early Middle Cambrian): a unit for Cambrian correlation in the Mediterranean subprovince. Geological Magazine 136: 39–48.CrossRefGoogle Scholar
  96. Şengör, A.M.C., and Y. Yılmaz. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75: 181–241.CrossRefGoogle Scholar
  97. Shinaq, R., and O. Elicki. 2007. The Cambrian sedimentary succession from the Wadi Zerqa Ma’in (northeastern Dead Sea area, Jordan): lithology and fossil content. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 243(3): 255–271.CrossRefGoogle Scholar
  98. Shu, Degan. 1986. Notes on the oldest fossil bivalves from the Niutitang Formation of Fuquan, Guizhou (in Chinese with English abstract). Acta Palaeontologica Sinica [Gushengwu xuebao] 25: 219–222.Google Scholar
  99. Skovsted, C.B. 2004. The mollusc fauna of the Early Cambrian Bastion Formation of North-East Greenland. Bulletin of the Geological Society of Denmark 51: 11–37.Google Scholar
  100. Skovsted, C.B. 2006. Small shelly fauna from the late Early Cambrian Bastion and Ella Island Formations, North-East Greenland. Journal of Paleontology 80(6): 1087–1112.CrossRefGoogle Scholar
  101. Sommer, U. 2005. Biologische Meereskunde, 412 p. Berlin: Springer.Google Scholar
  102. Tevesz, M.J.S., and P.L. McCall. 1976. Primitive life habits and adaptive significance of the bivalve form. Paleobiology 2: 183–190.Google Scholar
  103. Tevesz, M.J.S., and P.L. McCall. 1985. Primitive life habits of bivalvia reconsidered. Journal of Paleontology 59(5): 1326–1330.Google Scholar
  104. Vogel, K. 1962. Muscheln mit Schloßzähnen aus dem spanischen Kambrium und ihre Bedeutung für die Evolution der Lamellibranchiaten. Abhandlungen der mathematisch-naturwissenschaftliche Klasse, Akademie der Wissenschaften und Literatur zu Mainz 4: 193–244.Google Scholar
  105. Vogel, K., and W.F. Gutmann. 1980. The derivation of bivalves: rôle of biomechanics, physiology and environment. Lethaia 13: 269–275.CrossRefGoogle Scholar
  106. Wotte, Th. 2004. Evidence and facial position of reef mounds in the Lower Cambrian of the Doberlug-Torgau area. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 233(3): 397–422.Google Scholar
  107. Wotte, Th. 2006. New Middle Cambrian molluscs from the Láncara Formation of the Cantabrian Mountains (north-western Spain). Revista Española de Paleontología 21(2): 145–158.Google Scholar
  108. Yu, Wen. 1985. Yangtzedonta—a problematic Bivalvia from the Meishucunian Stage, China (in Chinese with English abstract). Acta Micropalaeontologica Sinica 2(4): 401–408.Google Scholar
  109. Yu, Wen. 1987. Yangtze micromolluscan fauna in Yangtze region of China with notes on Precambrian–Cambrian boundary. Stratigraphy and palaeontology of systemic boundaries in China, Precambrian–Cambrian boundary 1: 19–344.Google Scholar
  110. Zhang, Renjie. 1980. The earliest bivalve fauna, bivalves from Lower Cambrian Tianheban Formation, Xianfen, Hubei (in Chinese with English abstract). Bulletin of Yichang Institute of Geology and Mineral Resources 1(1): 1–17.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Geological InstituteFreiberg UniversityFreibergGermany
  2. 2.Mineralogy-Petrography DivisionGeneral Directorate of Mineral Research and Exploration (MTA)AnkaraTurkey

Personalised recommendations