Advertisement

Paläontologische Zeitschrift

, Volume 83, Issue 2, pp 293–308 | Cite as

Re-evaluation of the Devonian family Helianthasteridae Gregory, 1899 (Asteroidea: Echinodermata)

  • Daniel B. BlakeEmail author
Research Paper

Abstract

Because of their taxonomic and morphologic diversity, the asteroids of the Lower Devonian Hunsrück Slate of Germany are important to both an understanding of the history of the class Asteroidea and to the interpretation of community evolution during the Paleozoic. Helianthaster Roemer, 1863, a large multiarmed Hunsrück asteroid, is redescribed. The Helianthasteridae Gregory is restricted to Helianthaster and Arkonaster Kesling, 1982 (Middle Devonian, Canada); Lepidasterella Schuchert is similar to the other two genera but known specimens are of poor quality and as a result the status of the genus is uncertain. Helianthaster is noteworthy in part because its size, multiarmed state, and presence of pedicellariae suggest certain crown-group genera, yet aspects of the arrangement of the ambulacral column are characteristic of the Paleozoic asteroid evolutionary grade. Neither Helianthaster nor other Hunsrück asteroids appear closely linked to the crown group; instead, functional patterns apparently re-emerged through time, although identification of specific behavior of ancient asteroids is difficult to impossible.

Keywords

Echinodermata Asteroidea Hunsrück Slate Devonian Paleoecology Phylogeny 

Zusammenfassung

Wegen ihrer taxonomischen und morphologischen Diversität sind die Asteriden des unterdevonischen Hunsrückschiefers sehr bedeutsam für das Verständnis der Evolutionsgeschichte der Asteroidea, wie auch für die Interpretation der Entwicklung paläozoischer Organismengemeinschaften. In vorliegender Arbeit wird der große vielarmige Helianthaster Roemer, 1863 neu beschrieben. Die Zugehörigkeit zur Familie Helianthasteridae Gregory wird auf die beiden Gattungen Helianthaster und Arkonaster Kesling, 1982 (Mittel-Devon, Kanada) beschränkt. Lepidasterella Schuchert ist diesen beiden Gattungen sehr ähnlich, jedoch sind bisher alle bekannten Funde von Lepidasterella schlechter erhalten, so daß die taxonomische Zugehörigkeit dieser Gattung unsicher bleibt. Helianthaster ist aufgrund seiner Größe und Vielarmigkeit teilweise bemerkenswert. Das Vorhandensein von Pedizellarien verweist mit Sicherheit auf Krongruppen-Gattungen, jedoch sind Aspekte der Anordnung der Ambulakralreihen charakteristisch für paläozoische Asteroidea. Weder Helianthaster noch andere Hunsrückschiefer-Asteriden scheinen nah verwandt mit Krongruppen-Vertretern; stattdessen tauchen anscheinend bestimmte Funktionsmuster durch die Zeit wieder auf. Auch ist die Bestimmung des spezifischen Verhaltens dieser stratigraphisch sehr alten Asteroidea schwierig bis unmöglich.

Schlüsselwörter

Echinodermata Asteroidea Devon Hunsrückschiefer Paläoökologie Phylogenie 

Notes

Acknowledgments

Hunsrück Slate asteroids are widely distributed, and many colleagues have generously aided my work on different taxa. Specifically for this study, I am indebted to Christoph Bartels, Deutsches Bergbau-Museum Bochum, who invited me to join Project Nahecaris, allowed me to study his personal collection, and guided me in the field. He and his wife Martha warmly opened their home to me. For the study of Helianthaster, I am indebted to Michael Wuttke and Markus Poschmann, Landesamt für Denkmalpflege, Rheinland-Pfalz, Mainz; Eberhard Frey and Wolfgang Munk, Staatliches Museum für Naturkunde Karlsruhe; and Scott Lidgard and Paul Meyer, Field Museum of Natural History, Chicago. Robert Niedzwiedzki, Wroclaw University, and Mariusz Salamon, University of Silesia, located the illustrated type of H. rhenanus. Alexander Glass, in the course of his dissertation research, gathered much information on Hunsrück fossils and their preparation, and he made travel plans. C. Bartels and F. Hotchkiss provided reviews of a preliminary draft, and F. Hotchkiss and an anonymous individual reviewed the manuscript for the journal; M. Reich translated the abstract into the German language; I am indebted to all. This is publication number 26 within the framework of Project Nahecaris.

References

  1. Aberhan, M., W. Kiessling, and F.T. Fürsich. 2006. Testing the role of biological interactions in the evolution of mid-Mesozoic marine benthic ecosystems. Paleobiology 32: 259–277.CrossRefGoogle Scholar
  2. Bartels C., D.E.G. Briggs, and G. Brassel. 1998. The fossils of the Hunsrück Slate: marine life in the Devonian. Cambridge Paleobiology Series, vol. 3, 309. Cambridge: Cambridge University Press.Google Scholar
  3. Bartels, C., M. Wuttke, and D.E.G. Briggs. 2002. The Nahecaris Project: releasing the marine life of the Devonian from the Hunsrück Slate of Bundenbach. Metalla 9(2): 55–138.Google Scholar
  4. Blainville, H.M. De. 1830. Zoophytes. Dictionnaire des Sciences Naturelles, 60. Strasbourg: F.G. Levrault.Google Scholar
  5. Blake, D.B. 1979. The affinities and origins of the crown-of-thorns sea star Acanthaster Gervais. Journal of Natural History 13: 303–314.CrossRefGoogle Scholar
  6. Blake, D.B. 2002. Compsaster formosus Worthen and Miller (Asteroidea; Echinodermata): a carboniferous homeomorph of the post-Paleozoic Asteriidae. Palaeontologische Zeitschrift 76: 357–367.Google Scholar
  7. Canfield, D.E., and Raiswell, R. 1991. Pyrite formation and fossil preservation. In Taphonomy, eds. Allison, P.A., and D.E.G. Briggs, 337–387. New York: Plenum Press.Google Scholar
  8. Christensen, A.M. 1970. Feeding biology of the sea-star Astropecten regularis Pennant. Ophelia 8: 1–134.Google Scholar
  9. Clarke, J.M. 1908. A devonic brittle-star. New York State Museum Bulletin 121: 61–64.Google Scholar
  10. Etter, W. 2002. Hunsrück slate: widespread pyritization of a Devonian fauna. In Exceptional fossil preservation, eds. Bottjer, D.J., W. Etter, J.W. Hagadorn, and C. M. Tang, 143–165. New York: Columbia University Press.Google Scholar
  11. Forbes, E. 1839. On the Asteriadae of the Irish Sea. Memoirs Wernerian Natural History Society 8: 113–130.Google Scholar
  12. Forbes, E. 1850. British organic remains. Memoirs of the Geological Survey of the United Kingdom Decade 3: 1–3.Google Scholar
  13. Glass, A., and D.B. Blake. 2004. Preservation of tube feet in an ophiuroid (Echinodermata) from the Lower Devonian Hunsrück Slate of Germany and a redescription of Bundenbachia beneckei and Palaeophiomyxa grandis. Paläontologische Zeitschrift 78: 73–95.Google Scholar
  14. Gregory, J.W. 1899. On Lindstromaster and the classification of the palaeasterids. Geological Magazine 6(4): 341–354.CrossRefGoogle Scholar
  15. Heddle, D. 1967. Versatility of movement and origins of asteroids. In Echinoderm biology. Symposium of the Zoological Society of London, vol. 20. ed. Millott, N., 125–141. London: Academic.Google Scholar
  16. Herringshaw, L.G., M.P. Smith, and A.T. Thomas. 2007. Evolutionary and ecological significance of Lepidaster grayi, the earliest multiradiate starfish. Zoological Journal of the Linnean Society 150: 743–754.CrossRefGoogle Scholar
  17. Hotchkiss, F.H.C. 2000. On the number of rays in starfish. American Zoologist 40: 340–354.CrossRefGoogle Scholar
  18. Jangoux, M., and A. Lambert. 1988. Comparative anatomy and classification of asteroid pedicellariae. In Echinoderm biology, eds. Burke, R.D., P.V. Mladenov, P. Lambert, and R.L. Parsley, 719–723. Rotterdam: A.A. Balkema.Google Scholar
  19. Kesling, R.V. 1964. A drastic reappraisal of “Lepidasterella babcocki Schuchert” as Helianthaster gyalinus Clarke a streptophiuran auluroid. In Contributions from the The Museum of Paleontology, The University of Michigan, vol. 19, 115–133.Google Scholar
  20. Kesling, R.V. 1971. Michiganaster inexpectatus, a new many-armed starfish from the Middle Devonian Rogers City Limestone of Michigan. In Contributions from The Museum of Paleontology, The University of Michigan, vol. 23, 247–262.Google Scholar
  21. Kesling, R.V. 1982. Arkonaster, a new multi-armed starfish from the Middle Devonian Arkona Shale of Ontario. In Contributions from the The Museum of Paleontology, The University of Michigan, vol. 26, 83–115.Google Scholar
  22. Kesling, R.V., and R.B. Chilman. 1975. Strata and megafossils of the Middle Devonian silica formation. In Papers on paleontology, The Museum of Paleontology, The University of Michigan, vol. 8, 1–408.Google Scholar
  23. Lawrence, J. 1987. A functional biology of echinoderms, 340. London: Croom Helm.Google Scholar
  24. Lawrence, J.M., and M. Komatsu. 1990. Mode of arm development in multiarmed species of asteroids. In Echinoderm research, eds. De Ridder, C., P. Dubois, M.-C. Lahaye, and M. Jangoux, 269–275. Rotterdam: A.A. Balkema.Google Scholar
  25. Lehmann, W.M. 1957. Die Asterozoen in den Dachschiefern des rheinischen Unterdevons. Abhandlungen des Hessischen Landesamtes für Bodenforschung 21: 1–160.Google Scholar
  26. Lehmann, W.M. 1958. Eine Holothurie zusammen mit Palaenectria devonica und einem Brachiopoden in den unterdevonischen Dachschiefern des Hunsrück durch Röntgenstrahlen entdeckt. Notizblatt des Hessischen Landesamtes für Bodenforschung 86: 81–86.Google Scholar
  27. Madsen, F.J. 1961. The Porcellanasteridae. In Galathea Report, vol. 4, 174. Copenhagen: Danish Science PressGoogle Scholar
  28. Mooi, R., and B. David. 2000. What a new model of skeletal homologies tells us about asteroid evolution. American Zoologist 40: 326–339.CrossRefGoogle Scholar
  29. Roemer, F. 1863. Neue Asteriden und Crinoiden aus devonischem Dachschiefer von Bundenbach bei Birkenfeld. Palaeontographica 9: 143–152.Google Scholar
  30. Salter, J.W. 1857. On some new Palaeozoic star-fishes. Annals and Magazine of Natural History 20(2): 321–334.Google Scholar
  31. Schuchert, C. 1914. Stelleroidea palaeozoica. Fossilium Catalogus I: Animalia 3: 1–53.Google Scholar
  32. Schuchert, C. 1915. Revision of Paleozoic Stelleroidea with special reference to North American Asteroidea. U.S. National Museum Bulletin 88: 1–311.Google Scholar
  33. Spencer, W.K. 1925. A monograph of the British Palaeozoic Asterozoa, 6. Palaeontographical Society Monograph 76: 237–324.Google Scholar
  34. Spencer, W.K. 1927. A monograph of the British Palaeozoic Asterozoa, 7. Palaeontographical Society Monograph 79: 325–388.Google Scholar
  35. Spencer, W.K. 1930. A monograph of the British Palaeozoic Asterozoa, 8. Palaeontographical Society Monograph 82: 389–436.Google Scholar
  36. Spencer, W.K. 1951. Early Palaeozoic starfish. Philosophical Transactions of the Royal Society (B) 235: 87–129.CrossRefGoogle Scholar
  37. Spencer, W.K., and C.W. Wright. 1966. Asterozoans. In Treatise on invertebrate paleontology, Part U, Echinodermata, vol. 3, no. 1, ed. Moore, R.C, U4–U107. Boulder: The Geological Society of America and The University of Kansas Press.Google Scholar
  38. Stuertz, B. 1886. Beitrag zur Kenntniss palaeozoischer Seesterne. Palaeontographica 32: 75–98.Google Scholar
  39. Stuertz, B. 1890. Neuer Beitrag zur Kenntniss palaeozoischer Seesterne. Palaeontographica 36: 203–247.Google Scholar
  40. Stuertz, B. 1899. Ein weiterer Beitrag zur Kenntnis palaeozoischer Asteroiden. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande, Westfalens und des Reg.-Bezirks Osnabrück 56: 176–240.Google Scholar
  41. Sutton, M.D., D.E.G. Briggs, Siveter, J. David, Siveter, J. Derek, and D.J. Gladwell. 2005. A starfish with three-dimensionally preserved soft parts from the Silurian of England. Proceedings of the Royal Society (B) 272: 1001–1006.Google Scholar
  42. Verrill, A.E. 1914. Monograph of the shallow-water starfishes of the North Pacific Coast from the Arctic Ocean to California. Smithsonian Institution Harriman Alaska Series, vol. 14, 1–408.Google Scholar
  43. Walenkamp, J.H.C. 1976. The asteroids of the coastal waters of Surinam. Zoologische Verhandelingen Vitgegeven, Rijksmuseum Natuurlijke Historie, Leiden 147: 1–91.Google Scholar
  44. Walenkamp, J.H.C. 1979. Asteroids (Echinodermata) from the Guyana Shelf. Zoologische Verhandelingen Vitgegeven, Rijksmuseum Natuurlijke Historie, Leiden 170: 1–97.Google Scholar
  45. Webster, G.D., D.J. Hafley, D.B. Blake, and A. Glass. 1999. Crinoids and stelleroids (Echinodermata) from the Broken Rib Member, Dyer Formation (Late Devonian, Famennian) of the White River Plateau, Colorado. Journal of Paleontology 73: 461–486.Google Scholar
  46. Wehrmann, A., G. Hertweck, R. Brocke, U. Jansen, P. Königshof, G. Plodowski, E. Schindler, V. Wilde, A. Blieck, and S. Schultka. 2005. Paleoenvironment of an early Devonian land-sea transition: a case study from the southern margin of the Old Red Continent (Mosel Valley, Germany). Palaios 20: 101–120.CrossRefGoogle Scholar
  47. Welch, J.R. 1984. The asteroid, Lepidasterella montanensis n. sp., from the Upper Mississippian Bear Gulch Limestone of Montana. Journal of Paleontology 58: 843–851.Google Scholar
  48. Woodward, H. 1874. Description of a new species of starfish from the Devonian of Great Inglebourne, Harberton, South Devon. Geological Magazine 11: 6–10.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of GeologyUniversity of IllinoisUrbanaUSA

Personalised recommendations