Paläontologische Zeitschrift

, Volume 83, Issue 1, pp 85–129

The chalicothere Metaschizotherium bavaricum (Perissodactyla, Chalicotheriidae, Schizotheriinae) from the Miocene (MN5) Lagerstätte of Sandelzhausen (Germany): description, comparison, and paleoecological significance

Research Paper

Abstract

Within the fossil collection from the Sandelzhausen Lagerstätte in the Upper Freshwater Molasse near Mainburg, Germany, are remains of the schizotheriine chalicothere Metaschizotherium bavaricum, von Koenigswald, 1932. This new material includes elements from a large part of the body, and allows the dentition and postcranial skeleton of Metaschizotherium to be described in detail for the first time. At approximately 16 Ma (MN5), M. bavaricum is now the best-known Early and Middle Miocene European schizotheriine and is important for comparative studies. It differs to some degree from earlier Miocene (MN2–MN4) European material attributed to Moropus sp. or Metaschizotherium wetzleri (Kowalewsky, 1873) and to a larger degree from the Late Miocene species Ancylotherium pentelicum (Gaudry and Lartet, 1856). At Sandelzhausen, M. bavaricum apparently lived in a moist forested environment, where it probably fed on leaves, fruit, and seeds. Members of the Chalicotheriinae, such as Anisodon and Chalicotherium, are not found at Sandelzhausen and may not have been present in Europe at this time. M. bavaricum, like other Schizotheriinae, did not have the bizarre gorilla-like proportions of the Chalicotheriinae. Instead, its general body proportions resemble those of contemporary schizotheriine chalicotheres on other continents, for example, Moropus from North America. M. bavaricum is slightly smaller than the type species of Metaschizotherium, M. fraasi von Koenigswald, 1932 (MN6–MN7) and differs from it in small ways that are still being explored as variation within and differences between these species are clarified. The schizotheriine chalicothere from La Grive St.-Alban (France) referred to M. fraasi by von Koenigswald (Palaeontographica, Beitrage zur Naturgeschichte der Vorzeit 8:1–24, 1932) and Viret (Nouvelles Archives Musée d’Histoire Naturelle de Lyon 6:53–81, 1961) should be restudied and referred to a different taxon.

Keywords

Metaschizotherium bavaricum Sandelzhausen Chalicothere Schizotheriinae Moropus Ancylotherium La Grive Miocene 

Kurzfassung

Aus der Fossillagerstätte Sandelzhausen in der Oberen Süßwasser Molasse bei Mainburg (Deutschland) ist das schizotherine Krallentier Metaschizotherium bavaricum, von Koenigswald, 1932 belegt. Dieses neue Material erlaubt erstmals die detaillierte Beschreibung von Bezahnung und postcranialem Skelett von Metaschizotherium. Mit einem Alter von ca. 16 Mio Jahren (MN5) ist M. bavaricum derzeit das am besten belegte schizotherine Krallentier des Unter- und Mittelmiozäns Europas und von großer Bedeutung für vergleichende Studien. Es underscheidet sich nur in geringem Maße von Material aus dem Untermiozän (MN2–MN4) Europas, das Moropus sp. oder Metaschizotherium wetzleri (Kowalewsky, 1873) zugeordnet wurde, differiert aber deutlich von der obermiozänen Art Ancylotherium pentelicum (Gaudry and Lartet, 1856). In Sandelzhausen lebte M. bavaricum offensichtlich in einem feuchten, bewaldeten Lebensraum und ernährte sich wahrscheinlich von Blättern, Früchten und Samen. Andere Vertreter von den Chalicotheriinae, wie z.B. Anisodon oder Chalicotherium, finden sich in Sandelzhausen nicht und waren wohl in dieser Zeit generell in Europa nicht beheimatet. Wie auch andere schizotherine Chalicotherien, so zeichnete sich auch M. bavaricum nicht durch die bizarre Gorilla-artigen Körperproportion aus, sondern ähnelt dem generellen Körperbauplan anderer zeitgleicher schizotheriner Krallentiere auf anderen Kontinenten, wie z.B. Moropus aus Nordamerika. M. bavaricum ist geringfügig kleiner als die Typusart Metaschizotherium fraasi von Koenigswald, 1932 (MN6–MN7) und unterscheidet sich davon nur in geringem Maße, wobei die Abgrenzung zwischen morphologischer Variation und tatsächlichen Unterschieden zwischen den beiden Arten weiterer Untersuchungen bedarf. Das schizotherine Krallentier von La Grive St.-Alban (Frankreich), das von Koenigswald (Palaeontographica, Beitrage zur Naturgeschichte der Vorzeit 8:1–24, 1932) und Viret (Nouvelles Archives Musée d’Histoire Naturelle de Lyon 6:53–81, 1961) zu M. fraasi gestellt wurde, sollte neuerlich untersucht und möglichweise einer anderen Art zugeordnet werden.

Schlüsselwörter

Metaschizotherium bavaricum Sandelzhausen Chalicotherien Schizotheriinae Moropus Ancylotherium La Grive Miozän 

References

  1. Alberdi, M.T., L. Ginsburg, and J. Morales. 1981. Rhinocerotidae del yacimiento de Los Valles de Fuentidueña (Segovia). Estudios Geologicos Madrid 37: 439–465.Google Scholar
  2. Albright III, L.B. 1999. Ungulates of the Toledo Bend Local Fauna (Late Arikareean, Early Miocene), Texas Gulf Coastal Plain. Bulletin of the Florida Museum of Natural History 42: 1–80.Google Scholar
  3. Antunes, M.T. 1966. Notes sur la géologie et la paléontologie du Miocène de Lisbonne. V. Un schizotheriiné du genre Phyllotillon (Chalicotherioidea, Perissodactyla) dans l’Helvétien V-b de Charneca do Lumiar. Remarques écologiques sur la faune de mammifères. Boletim de Sociedade Géologica de Portugal 16: 159–178.Google Scholar
  4. Bach, F. 1912. Chalicotherienreste aus dem Tertiär Steiermarks. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt 62: 681–690.Google Scholar
  5. Belinchon, M., and P. Montoya. 1989–1990. Presencia de Phyllotillon naricus Pilgrim (Chalicotheriidae, Perissodactyla, Mammalia) en el Aragoniense de Buñol (Valencia). Breve síntesis de los calicotéridos en el registro español. Paleontologia i Evolució 23: 171–180.Google Scholar
  6. Belyaeva, E.I. 1954. [Chalicotheres of the Soviet Union and Mongolia.]. Trudy Paleontologicheskovo Instituta Akademia Nauk USSR 55(3): 44–84.Google Scholar
  7. Borissiak, A.A. 1945. The chalicotheres as a biological type. American Journal of Science 243: 667–679.Google Scholar
  8. Borissiak, A.A. 1946. [A new chalicothere from the Tertiary of Kazakhstan.]. Trudy Paleontologicheskovo Instituta, Akademia Nauk USSR 13(3): 1–134.Google Scholar
  9. Butler, P.M. 1965. Fossil mammals of Africa. No. 18. East African Miocene and Pleistocene chalicotheres. Bulletin of the British Museum Natural History Geology 10: 165–237.Google Scholar
  10. Colbert, E.H. 1934. Chalicotheres from Mongolia and China in the American Museum. Bulletin of the American Museum of Natural History 67: 353–387.Google Scholar
  11. Coombs, M.C. 1974. Ein Vertreter von Moropus aus dem europäischen Aquitanien und eine Zusammenfassung der europäischen postoligozänen Schizotheriinae (Mammalia, Perissodactyla, Chalicotheriidae). Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse (Abt. I) 182: 273–288.Google Scholar
  12. Coombs, M.C. 1975. Sexual dimorphism in chalicotheres (Mammalia, Perissodactyla). Systematic Zoology 24: 55–62.CrossRefGoogle Scholar
  13. Coombs, M.C. 1978a. A premaxilla of Moropus elatus Marsh, and evolution of chalicotherioid anterior dentitions. Journal of Paleontology 52: 118–121.Google Scholar
  14. Coombs, M.C. 1978b. Reevaluation of early Miocene North American Moropus (Perissodactyla, Chalicotheriidae, Schizotheriinae). Bulletin of Carnegie Museum of Natural History 4: 1–62.Google Scholar
  15. Coombs, M.C. 1979. Tylocephalonyx, a new genus of North American dome-skulled chalicotheres (Mammalia, Perissodactyla). Bulletin of the American Museum of Natural History 164: 1–64.Google Scholar
  16. Coombs, M.C. 1983. Large mammalian clawed herbivores: a comparative study. Transactions of the American Philosophical Society 73(7): 1–96.CrossRefGoogle Scholar
  17. Coombs, M.C. 1989. Interrelationships and diversity in the Chalicotheriidae. In The Evolution of Perissodactyls, eds. Prothero, D.R., and R.M. Schoch, 438–457. Oxford/New York: Clarendon/Oxford University Press.Google Scholar
  18. Coombs, M.C. 2004. Moropus merriami in the early Barstovian Lower Snake Creek fauna of Nebraska, with comments on biogeography of North American chalicotheres. Bulletin of the American Museum of Natural History 285: 191–208.CrossRefGoogle Scholar
  19. Coombs, M.C., and B.M. Rothschild. 1999. Phalangeal fusion in schizotheriine chalicotheres (Mammalia, Perissodactyla). Journal of Paleontology 74: 682–690.Google Scholar
  20. Coombs, M.C., and G.M. Semprebon. 2005. The diet of chalicotheres (Mammalia, Perissodactyla) as indicated by low magnification stereoscopic microwear analysis. Abstracts of Papers, 65th Annual Meeting, Society of Vertebrate Paleontology, Mesa, Arizona. Journal of Vertebrate Paleontology 25(Supplement to Number 3): 47A.Google Scholar
  21. Coombs, M.C., R.M. Hunt Jr., E. Stepleton, L.B. Albright III, and T.J. Fremd. 2001. Stratigraphy, chronology, biogeography, and taxonomy of early Miocene small chalicotheres in North America. Journal of Vertebrate Paleontology 21: 607–620.CrossRefGoogle Scholar
  22. Depéret, C. 1892. La faune de mammifères Miocènes de la Grive-Saint-Alban, Isère, et quelques autres localités du bassin du Rhone. Archives de Muséum d’Histoire Naturelle de Lyon 5(2): 1–93.Google Scholar
  23. Dietrich, W.O. 1942. Ältestquartäre Säugetiere aus der südlichen Serengeti, Deutsch-Ostafrika. Palaeontographica, Stuttgart 94A: 43–130.Google Scholar
  24. Eronen, J.T., and G.E. Rössner. 2007. Wetland paradise lost: Miocene community dynamics in large herbivorous mammals from the German Molasse Basin. Evolutionary Ecology Research 9: 471–494.Google Scholar
  25. Fahlbusch, V. 1976. Die obermiozäne Wirbeltierfundstelle Sandelzhausen. Zentralblatt für Geologie und Paläontologie, Teil II. 1976: 255–261.Google Scholar
  26. Fahlbusch, V. 2003. Die miozäne Fossil-Lagerstätte Sandelzhausen Die Ausgrabungen 1994–2001. Zitteliana (A) 43: 109–122.Google Scholar
  27. Fahlbusch, V., and H. Gall. 1970. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 1. Endeckung, Geologie, Faunenübersicht und Grabungsbericht für 1969. Mitteilungen der Bayerischen Staatsammlung für Paläontologie und historische Geologie 10: 365–396.Google Scholar
  28. Fahlbusch, V. and R. Liebreich. 1996. Hasenhirsch und Hundebär. Chronik der tertiären Fossil-Lagerstätte Sandelzhausen bei Mainburg. Munich: Verlag Dr. Friedrich Pfeil, p 40.Google Scholar
  29. Fahlbusch, V., H. Gall, and N. Schmidt-Kittler. 1972. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 2. Sediment und Fossilinhalt—Probleme der Genese und Ökologie. – Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1972: 331–343.Google Scholar
  30. Fejfar, O., E.P.J. Heizmann, and P. Major. 1997. Metaschizotherium cf. wetzleri (Kowalewsky) from the early Miocene of Czech Republic and South Germany. In Actes du Congrès BiochroM’97, Mémoires et Travaux de l’Ecole Practique des Hautes Etudes, Institut de Montpellier, vol. 21, eds. Aguilar, J.-P., S. Legendre, and J. Michaux, 707–709.Google Scholar
  31. Filhol, H. 1894. Observations concernant quelques mammifères fossils nouveaux du Quercy. Annales des Sciences Naturelles, Zoologie (ser. 7) 16: 129–150.Google Scholar
  32. Forster-Cooper, C. 1920. Chalicotheroidea from Baluchistan. Proceedings of the Zoological Society of London 1920: 357–366.Google Scholar
  33. Fraas, O. 1870. Die Fauna von Steinheim mit Rücksicht auf die miocenen Säugethier—und Vogelreste des Steinheimer Beckens. 54, 8 pls., Stuttgart: E. Schweizerbart’sche Verlagshandlung, E. Koch.Google Scholar
  34. Garevski, R., and H. Zapfe. 1983. Weitere Chalicotheriiden-funde aus der Pikermi-fauna von Titov Veles (Mazedonien, Jugoslawien). Acta Musei Macedonici Scientarum Naturalium, Skopje 17: 1–20.Google Scholar
  35. Gaudry, A. 1862. Animaux fossiles et géologie de l’Attique, 475, 75 plates. Paris: Libraire de la Societé Géologique de France.Google Scholar
  36. Gaudry, A., and E. Lartet. 1856. Résultats des recherches paléontologiques entreprises dans l’Attique sous les auspices de l’Académie. Comptes Rendus de l’Académie des Sciences, Paris 43: 271–274.Google Scholar
  37. Gill, T. 1872. Arrangement of the families of mammals with analytical tables. Smithsonian Miscellaneous Collections 11: 1–98.Google Scholar
  38. Ginsburg, L. 1970. Les Mammifères des faluns helvétiens du Nord de la Loire. Comptes Rendus Sommaire des Séances de la Societé Géologique de France 1970(6): 189–190.Google Scholar
  39. Ginsburg, L. 1999. Order Carnivora. In The Miocene Land Mammals of Europe, eds. Rössner, G.E., and K. Heissig, 109–148. Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  40. Guérin, C., and M. Pickford. 2005. Ancylotherium cheboitense nov. sp., nouveau Chalicotheriidae (Mammalia Perissodactyla) du Miocène supérieur des Tugen Hills (Kénya). Comptes Rendus Palevol 4: 225–234.CrossRefGoogle Scholar
  41. Heissig, K. 1997. Mammal faunas intermediate between the reference faunas of MN4 and MN6 from the Upper Freshwater Molasse of Bavaria. In Actes du Congrès BiochroM’97, Mémoires et Travaux de l’Ecole Practique des Hautes Etudes, Institut de Montpellier, vol. 21, eds. Aguilar, J.-P., S. Legendre, and J. Michaux, 537–546.Google Scholar
  42. Heissig, K. 1999a. Family Chalicotheriidae. In The Miocene Land Mammals of Europe, eds. Rössner, G.E. and K. Heissig, 189–192, Munich: Pfeil.Google Scholar
  43. Heissig, K. 1999b. Family Rhinocerotidae. In The Miocene Land Mammals of Europe, eds. Rössner, G.E. and K. Heissig, 175–188, Munich: Pfeil.Google Scholar
  44. Holland, W.J., and O.A. Peterson. 1914. The osteology of the Chalicotheroidea with special reference to a mounted skeleton of Moropus elatus Marsh, now installed in the Carnegie Museum. Memoirs of the Carnegie Museum 3: 189–406.Google Scholar
  45. Hooker, J.J. 1994. The beginning of the equoid radiation. Zoological Journal of the Linnean Society 112: 29–63.CrossRefGoogle Scholar
  46. Hunt Jr., R.M. 1998. Amphicyonidae. In Evolution of Tertiary Mammals of North America, vol. 1: Terrestrial Carnivores, Ungulates. and Ungulatelike Mammals, eds. Janis, C.M., K.M. Scott, and L.L. Jacobs, 196–227. Cambridge: Cambridge University Press.Google Scholar
  47. Hunt Jr., R.M. 2002. Intercontinental migration of Neogene amphicyonids (Mammalia, Carnivora): appearance of the Eurasian beardog Ysengrinia in North America. American Museum Novitates 3384: 1–53.CrossRefGoogle Scholar
  48. Kaiser, T.M., and G.E. Rössner. 2007. Dietary resource partitioning in ruminant communities of Miocene wetland and karst palaeoenvironments in Southern Germany. Palaeogeography Palaeoclimatology Palaeoecology 252: 424–439.CrossRefGoogle Scholar
  49. Kaup J.-J. 1833. Description d’ossements fossiles de mammifères inconnus jusqu’à présent qui se trouvent au Muséum grand ducal de Darmstadt, 2:31, Darmstadt: Heyer J.G.Google Scholar
  50. Kaya, T. 1993. First record of Moropus elatus (Chalicotheriidae–Perissodactyla) in Turkey (Seyitömer-Kütahya). Doga-Turk Yerbilimieri/Turkish Journal of Earth Science 2: 189–194.Google Scholar
  51. Kaya, T., V. Tuna, and D. Geraads. 2001. A new late Orleanian/early Astaracian mammalian fauna from Kultak (Milas-Mugla), southwestern Turkey. Geobios 34: 673–680.CrossRefGoogle Scholar
  52. Kowalewsky, W. 1873. Monographie der Gattung Anthracotherium Cuv. und Versuch einer natürlichen Classification der fossilen Hufthiere. Palaeontographica (n. ser.) 22: 131–346.Google Scholar
  53. Merriam, J.C. 1911. Tertiary mammal beds of Virgin Valley and Thousand Creek in northwestern Nevada. Part 2. Vertebrate faunas. University of California Publication. Bulletin of the Department of Geology 6: 199–304.Google Scholar
  54. Montoya, P., E. Peñalver, F.J. Ruiz-Sánchez, C. de Santisteban, L. Alcalá, M. Belinchón, and J.I. Lacomba 1996. Los yacimientos paleontológicos de la cuenca tertiaria continental de Rubielos de Mora (Aragón). Revista Española de Paleontología, No. Extraordinario, 215–224.Google Scholar
  55. Moser, M., G.E. Rössner, U.B. Göhlich, M. Böhme, and V. Fahlbusch. 2009. The fossil lagerstätte Sandelzhausen (Miocene; southern Germany): history of investigation, geology, fauna and age. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna. Paläontologische Zeitschrift, eds. Rössner, G.E. and U.B. Göhlich 83(1).Google Scholar
  56. Mottl, M. 1966. Neue Säugetierfunde aus dem Jungtertiär der Steiermark. VIII. Eine neue unterpliozäne Säugetierfauna aus der Steiermark, SO-Österreich. Mitteilungen des Museums für Bergbau Geologie und Technik am Landesmuseum ‘Joanneum’. Graz 28: 33–62.Google Scholar
  57. Mottl, M. 1970. Die jungtertiären Säugetierfaunen der Steiermark, Südost-Österreichs. Mitteilungen des Museums für Bergbau Geologie und Technik am Landesmuseum ‘Joanneum Graz’ 31: 1–92.Google Scholar
  58. Osborn, H.F. 1919. Seventeen skeletons of Moropus; probable habits of this animal. Proceedings of the National Academy of Science 5: 250–252.CrossRefGoogle Scholar
  59. Pickford, M. 1979. New evidence pertaining to the Miocene Chalicotheriidae (Mammalia, Perissodactyla) of Kenya. Tertiary Research 2: 83–91.Google Scholar
  60. Pilgrim, G.E. 1910. Notices of new mammalian genera and species from the Tertiaries of India. Records of the Geological Survey of India 40: 63–71.Google Scholar
  61. Qiu Z., W. Wu, and Z. Qiu (1999) Miocene mammal faunal sequence of China: palaeozoogeography and Eurasian relationships. In The Miocene land mammals of Europe,eds. Rössner G.E., and K. Heissig, 443–455, Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  62. Rinnert, P. 1956. Die Huftiere aus dem Braunkohlenmiozän bei Oberpfalz. Palaeontographica, Stuttgart 107A: 1–65.Google Scholar
  63. Roussiakis, S.J., and G.E. Theodorou. 2001. Ancylotherium pentelicum (Gaudry and Lartet, 1856) (Perissodactyla, Mammalia) from the classic locality of Pikermi (Attica, Greece), stored in the Palaeontological and Geological Museum of Athens. Geobios 34: 563–584.CrossRefGoogle Scholar
  64. Saraç, G., T. Kaya, and D. Geraads. 2002. Ancylotherium pentelicum (Perissodactyla, Mammalia) from the Upper Miocene of central and western Turkey. Geobios 35: 241–251.CrossRefGoogle Scholar
  65. Schaub, S. 1943. Die Vorderextremität von Ancylotherium pentelicum Gaudry und Lartet. Schweizerischen Palaeontologischen Abhandlungen 64: 1–36.Google Scholar
  66. Schulz, E. and J.M. Fahlke. 2009. The diet of Metaschizotherium bavaricum (Chalicotheriidae, Mammalia) from the MN5 of Sandelzhausen (Germany) implied by the mesowear method. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna—Paläontologische Zeitschrift, eds. Rössner, G.E. and U.B. Göhlich 83 (1).Google Scholar
  67. Schulz, E., J.M. Fahlke, G. Merceron, and T.M. Kaiser. 2007. Feeding ecology of the Chalicotheriidae (Mammalia, Perissodactyla, Ancylopoda). Results from dental micro- and mesowear analyses. Verhandlungen des Naturwissenschaftlichen Vereins Hamburg 43: 5–31.Google Scholar
  68. Semprebon, G.M., L.R. Godfrey, N. Solounias, M.R. Sutherland, and W.L. Jungers. 2004. Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution 47: 115–144.CrossRefGoogle Scholar
  69. Solounias, N., and G.M. Semprebon. 2002. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates 3366: 1–49.CrossRefGoogle Scholar
  70. Tassy, P. 1978. Chalicotherium: le “cheval-gorille”. La Recherche 87: 283–285.Google Scholar
  71. Tedford, R.H., L.B. Albright III, A.D. Barnosky, I. Ferrusquia-Villafranca, R.M. Hunt Jr, J.E. Storer, C.C. Swisher III, M.R. Voorhies, S.D. Webb, and D.P. Whistler. 2004. Mammalian biochronology of the Arikareean through Hemphillian interval (Late Oligocene through Early Pliocene epochs). In Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Biochronology, ed. M.O. Woodburne, 232–314. New York: Columbia University Press.Google Scholar
  72. Thenius, E. 1953. Studien über fossile Vertebraten Griechenlands. III. Das Maxillargebiss von Ancylotherium pentelicum Gaudry und Lartet. Annales Géologiques des Pays Helléniques 5: 97–106.Google Scholar
  73. Tütken, T. and T. Vennemann. 2009. Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna—Paläontologische Zeitschrift, eds. Rössner, G.E. and U.B. Göhlich 83 (1).Google Scholar
  74. Viret, J. 1949. Quelques considerations preliminaires à propos de la revision de la faune des mammifères Miocènes de la Grive St.-Alban. Bulletin Mensuel de la Societé Linnéenne de Lyon 18: 53–57.Google Scholar
  75. Viret, J. 1961. Catalog critique de la faune des mammifères Miocènes de La Grive Saint-Alban (Isère). Nouvelles Archives Musée d’Histoire Naturelle de Lyon 6: 53–81.Google Scholar
  76. von Koenigswald, G.H.R. 1932. Metaschizotherium fraasi n. g. n. sp., ein neuer Chalicotheriide aus dem Obermiocän von Steinheim a. Albuch. Bemerkungen zur Systematik der Chalicotheriiden. Palaeontographica, Beitrage zur Naturgeschichte der Vorzeit 8: 1–24.Google Scholar
  77. Xue, X-x, and M.C. Coombs. 1985. A new species of Chalicotherium from the upper Miocene of Gansu Province, China. Journal of Vertebrate Paleontology 5: 336–344.Google Scholar
  78. Zapfe, H. 1967. Ancylotherium in Obermiozän des Wiener Beckens. Annalen des Naturhistorischen Museums in Wien 71: 401–411.Google Scholar
  79. Zapfe, H. 1974. Ein schizotheriiner Chalicotheriide aus pannonischen Schottern der Umgebung von Krems, Niederösterreich. Sitzungsberichte der Österreichischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse (Abt. I) 182: 289–299.Google Scholar
  80. Zapfe, H. 1979. Chalicotherium grande (Blainv.) aus der miozänen Spaltenfüllung von Neudorf an der March (Devinská Nová Ves), Tschechoslowakei. Neue Denkschriften des Naturhistorischen Museums in Wien 2: 1–282.Google Scholar
  81. Ziegler, R. 1999. Order Insectivora. In The Miocene Land Mammals of Europe, eds. Rössner, G.E. and K. Heissig, 53–74, Munich: Pfeil.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Biology and Graduate Program in Organismic and Evolutionary BiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations