Advertisement

Active Contour Method Based Sub-pixel Critical Dimension Measurement of Thin Film Transistor Liquid Crystal Display (TFT-LCD) Patterns

  • 20 Accesses

Abstract

A novel application-oriented sub-pixel measurement method utilizing an active contour model with image resampling is presented for a critical dimension (CD) measurement of pixel patterns of a flat-panel thin film transistor crystal display (TFT-LCD) and organic light-emitting diode display. In modern manufacturing of flat panel display, optical measurement of each dimension of pixel patterns has a critical role in the process control, and the resolution of a measurement system becomes a limitation of the manufacturing process. Several methods have been developed to overcome this limit at the image post processing stage, but as the level of pixel integration and manufacturing throughput are increasing rapidly, more robust and effective inspection approach is required. In this paper, a novel sub-pixel level edge detection algorithm with active contour method and fast pixel resampling is proposed for micron scale CD measurement, and its advantages on measurement repeatability and noise handling are presented, along with the results of various industrial sample measurements and comparison with conventional critical dimension measurement algorithms.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Lee, J. Y., Kim, T. W., & Pahk, H. J. (2017). Robust defect detection method for a non-periodic TFT-LCD pad area. International Journal of Precision Engineering and Manufacturing,18(8), 1093–1102.

  2. 2.

    Kim, M.-G. (2019). Improved measurement of thin film thickness in spectroscopic reflectometer using convolutional neural networks. International Journal of Precision Engineering and Manufacturing. https://doi.org/10.1007/s12541-019-00260-4.

  3. 3.

    Park, J., Kim, J. A., Ahn, H., Bae, J., & Jin, J. (2019). A review of thickness measurements of thick transparent layers using optical interferometry. International Journal of Precision Engineering and Manufacturing,20(3), 463–477.

  4. 4.

    Lee, J. H., Kim, Y. S., Kim, S. R., Lee, I. H., & Pahk, H. J. (2008). Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm. Optics and Lasers in Engineering,46(7), 558–569.

  5. 5.

    Breder, R. L. B., Estrela, V. V., & de Assis, J. T. (2009). Sub-pixel accuracy edge fitting by means of b-spline. In 2009 IEEE international workshop on multimedia signal processing (pp. 1–5). IEEE.

  6. 6.

    Park, S. H., Kim, T. W., Lee, J. H., & Pahk, H. J. (2014). Real-time critical dimension measurement of thin film transistor liquid crystal display patterns using optical coherence tomography. Journal of Electronic Imaging,23(1), 013001.

  7. 7.

    Doan, N. T., Moon, J. H., Kim, T. W., & Pahk, H. J. (2012). A fast image enhancement technique using a new scanning path for critical dimension measurement of glass panels. International Journal of Precision Engineering and Manufacturing,13(12), 2109–2114.

  8. 8.

    Dodgson, N. A. (1997). Quadratic interpolation for image resampling. IEEE Trans.,6, 1322–1326.

  9. 9.

    Hou, H. S., & Andrews, H. C. (1978). Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing,ASSP-26, 508–517.

  10. 10.

    Keys, R. G. (1981). Cubic convolution interpolation for digital image processing. IEEE Transactions on Acoustics, Speech, and Signal Processing,ASSP-29, 1153–1160.

  11. 11.

    Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine,16, 22–38.

  12. 12.

    Kisworo, M., Venkatesh, S., & West, G. (1991). 2-D edge feature extraction to subpixel accuracy using the generalized energy approach. In TENCON’91. Region 10 international conference on EC3-energy, computer, communication and control systems (Vol. 3, pp. 344–348). IEEE.

  13. 13.

    Vandewalle, P., Süsstrunk, S., & Vetterli, M. (2006). A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP Journal on Advances in Signal Processing,2006(1), 071459.

  14. 14.

    Zweig, G. (2003). Super-resolution Fourier transforms by optimisation, and ISAR imaging. IEE Proceedings-Radar, Sonar and Navigation,150(4), 247–252.

  15. 15.

    Anbarjafari, G., & Demirel, H. (2010). Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image. ETRI Journal,32(3), 390–394.

  16. 16.

    Doan, N. T., Moon, J. H., Kim, T. W., & Pahk, H. J. (2012). Novel, fast, edge-directed image reconstruction algorithm using a substepping system for critical-dimension measurement of glass panels. Journal of Electronic Imaging,21(3), 033028.

  17. 17.

    Burger, W., & Burge, M. J. (2009). Principles of digital image processing: Core algorithms. London: Springer.

  18. 18.

    Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision,1(4), 321–331.

  19. 19.

    Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understanding,53(2), 211–218.

  20. 20.

    Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing,7(3), 359–369.

  21. 21.

    Sonka, M., Hlavac, V., & Boyle R. (1998). Image processing: Analysis and machine vision (2nd Edn.). Cengage Learning. ISBN-13: 978-0534953935.

Download references

Author information

Correspondence to Tai-Wook Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Kim, T., Ku, D.H. et al. Active Contour Method Based Sub-pixel Critical Dimension Measurement of Thin Film Transistor Liquid Crystal Display (TFT-LCD) Patterns. Int. J. Precis. Eng. Manuf. (2020) doi:10.1007/s12541-019-00314-7

Download citation

Keywords

  • Critical dimension
  • Optical measurement
  • Active contour
  • Sub-pixel