Rheotaxis Based High-Throughput Motile Sperm Sorting Device

  • Bohyun Hwang
  • Dongkyu Lee
  • Seung-Jun Hwang
  • Joong-Hwan Baek
  • Byungkyu KimEmail author
Regular Paper


A progressive motile sperm sorting device with a diffuser-type microfluidic channel is proposed to improve fertilization in assisted reproductive technologies. When sperm cells swim against a fluid flow, they are positioned according to their motility in specific channel zones. A numerical simulation is carried out in a meso-sized diffuser-type channel which can realize high throughput to verify the working principle and the sorting device is fabricated based on the simulation result. Furthermore, to analyze the condition of the semen and investigate the experimental results, a novel image processing method is proposed. With the proposed analyzing technique, the sperm sorting experiment is performed in the channel using the canine semen sample. As a result, the %motility increases from 59.89 to 69.36%, however, it does not satisfy the reported guideline for canine sperm motility (%motility > 70%). Therefore, we perform a washing process by injecting DPBS fluids to improve indexes related to motility. After double washing procedures, we could increase %motility from 59.89 to 82.24%, motile sperm rate from 33.38 to 53.10% and motility index from 26.35 to 49.44 in Zone A, comparing to the prepared sample.


Sperm Rheotaxis Motility Sperm sorting device Assisted reproductive technology (ART) High-throughput 



This research was supported by the Basic Science Research Program (NRF-2015R1D1A1A01057714) of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology and by the GRRC program of Gyeonggi province [GRRC Aviation 2018-B04, Development of Interactive VR Player and Service with Space Media Convergence].

Supplementary material

Supplementary material 1 (MP4 11485 kb)

Supplementary material 2 (MP4 3804 kb)

Supplementary material 3 (MP4 4890 kb)


  1. 1.
    Sharlip, I. D., Jarow, J. P., Belker, A. M., Lipshultz, L. I., Sigman, M., Thomas, A. J., et al. (2002). Best practice policies for male infertility. Fertility and Sterility, 77(5), 873–882.CrossRefGoogle Scholar
  2. 2.
    Agarwal, A., Mulgund, A., Hamada, A., & Chyatte, M. R. (2015). A unique view on male infertility around the globe. Reproductive Biology and Endocrinology, 13(1), 37.CrossRefGoogle Scholar
  3. 3.
    Chan, W. S., & Dixon, M. E. (2008). The “ART” of thromboembolism: A review of assisted reproductive technology and thromboembolic complications. Thrombosis Research, 121(6), 713–726.CrossRefGoogle Scholar
  4. 4.
    Andersen, A. N., Goossens, V., Gianaroli, L., Felberbaum, R., DeMouzon, J., & Nygren, K. G. (2007). Assisted reproductive technology in Europe, 2003. Results generated from European registers by ESHRE. Human Reproduction, 22(6), 1513–1525.CrossRefGoogle Scholar
  5. 5.
    Wilcox, L. S., Kiely, J. L., Melvin, C. L., & Martin, M. C. (1996). Assisted reproductive technologies: Estimates of their contribution to multiple births and newborn hospital days in the United States. Fertility and Sterility, 65(2), 361–366.CrossRefGoogle Scholar
  6. 6.
    Siegel, M. S. (1993). The male fertility investigation and the role of the andrology laboratory. Journal of Reproductive Medicine, 38(5), 317–334.Google Scholar
  7. 7.
    Dong, F. L., Sun, Y. P., Su, Y. C., Guo, Y. H., Hu, L. L., & Wang, F. (2011). Relationship between processed total motile sperm count of husband or donor semen and pregnancy outcome following intrauterine insemination. Syst. Biol. Reprod. Med., 57(5), 251–255.CrossRefGoogle Scholar
  8. 8.
    Beydola, T., Sharma, R. K., Lee, W., & Agarwal, A. (2013). Sperm preparation and selection techniques. In Male infertility practice, pp. 244–251.Google Scholar
  9. 9.
    Malvezzi, H., Sharma, R., Agarwal, A., Abuzenadah, A. M., & Abu-Elmagd, M. (2014). Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reproductive Biology and Endocrinology, 12(1), 121.CrossRefGoogle Scholar
  10. 10.
    Gardner, D. K., Weissman, A., Howles, C. M., & Shoham, Z. (2012). Textbook of assisted reproductive techniques fourth edition: Volume 2: Clinical perspectives. Boca Raton: CRC Press.CrossRefGoogle Scholar
  11. 11.
    Allen, N. C., Herbert, C. M., Maxson, W. S., Rogers, B. J., Diamond, M. P., & Wentz, A. C. (1985). Intrauterine insemination: A critical review. Fertility and Sterility, 44(5), 569–580.CrossRefGoogle Scholar
  12. 12.
    Mortimer, D. (2000). Sperm preparation methods. Journal of Andrology, 21(3), 357–366.Google Scholar
  13. 13.
    Younglai, E. V., Holt, D., Brown, P., Jurisicova, A., & Casper, R. F. (2001). Sperm swim-up techniques and DNA fragmentation. Human Reproduction, 16(9), 1950–1953.CrossRefGoogle Scholar
  14. 14.
    Wu, J. K., Chen, P. C., Lin, Y. N., Wang, C. W., Pan, L. C., & Tseng, F. G. (2017). High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis. Analyst, 142(6), 938–944.CrossRefGoogle Scholar
  15. 15.
    Zinaman, M. J., Uhler, M. L., Vertuno, E., Fisher, S. G., & Clegg, E. D. (1996). Evaluation of computer-assisted semen analysis (CASA) with IDENT stain to determine sperm concentration. Journal of Andrology, 17(3), 288–292.Google Scholar
  16. 16.
    Mortimer, S. T. (2000). CASA-Practical aspect. Journal of Andrology, 21(4), 515–524.Google Scholar
  17. 17.
    Purswell, B. J., Althouse, G. C., & Root, M. V. (1992). Guidelines for using the canine breeding soundness evaluation form. In: Annual meeting of the society for theriogenology, Montgomery, pp. 174–181.Google Scholar
  18. 18.
    Zhang, Z., Liu, J., Meriano, J., Ru, C., Xie, S., Luo, J., et al. (2016). Human sperm rheotaxis: A passive physical process. Scientific Reports, 6, 23553.CrossRefGoogle Scholar
  19. 19.
    Eisenbach, M. (1999). Sperm chemotaxis. Reviews of Reproduction, 4(1), 56–66.CrossRefGoogle Scholar
  20. 20.
    Bahat, A., Caplan, S. R., & Eisenbach, M. (2012). Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLoS ONE, 7(7), e41915.CrossRefGoogle Scholar
  21. 21.
    Batchelor, G. K. (2000). An introduction to fluid mechanics. Cambridge: Cambridge University Press.Google Scholar
  22. 22.
    Schiel, J. E., & Hage, D. S. (2005). Density measurements of potassium phosphate buffer from 4 to 45°C. Talanta, 65(2), 495–500.CrossRefGoogle Scholar
  23. 23.
    Korzynska, A., Roszkowiak, L., Lopez, C., Bosch, R., Witkowski, L., & Lejeune, M. (2013). Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3′-Diaminobenzidine&Haematoxylin. Diagnostic Pathology, 8(1), 48.CrossRefGoogle Scholar
  24. 24.
    Soler, C., Alambiaga, A., Martí, M. A., Garcia-Molina, A., Valverde, A., Contell, J., et al. (2017). Dog sperm head morphometry: Its diversity and evolution. Asian Journal of Andrology, 19(2), 149.CrossRefGoogle Scholar
  25. 25.
    Bouguet, J. Y. (2001). Pyramidal implementation of the lucas kanade feature tracker description of the algorithm. Intel Corporation, 5(1-10), 4.Google Scholar
  26. 26.
    World Health Organization, Department of Reproductive Health and Research. (2010). WHO laboratory manual for the examination and processing of human sperm (Fifth ed.). Geneva: World Health Organization.Google Scholar
  27. 27.
    Spiropoulos, J. (2001). Computerized semen analysis (CASA): Effect of semen concentration and chamber depth on measurements. Archives of Andrology, 46(1), 37–42.CrossRefGoogle Scholar
  28. 28.
    Shi, J., & Tomasi. (1994). Good features to track. 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 593–600.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Aerospace and Mechanical EngineeringKorea Aerospace UniversityGoyang-siSouth Korea
  2. 2.School of Electronics and Information EngineeringKorea Aerospace UniversityGoyang-siSouth Korea

Personalised recommendations