Advertisement

Double-Loop Control with Hierarchical Sliding Mode and Proportional Integral Loop for 2D Ridable Ballbot

  • Dinh Ba Pham
  • Jaejun Kim
  • Soon-Geul LeeEmail author
  • Kwan-Woong Gwak
Regular Paper
  • 51 Downloads

Abstract

In this study, we propose a nonlinear double-loop control system for a ridable ballbot. An improved nonlinear double-loop control technique based on double-loop control scheme and sliding mode technology is used, and the inner-loop consists of proportional–integral feedback plus feedforward control. A sliding mode control enables the ridable ballbot to balance and transfer on the floor. Feedforward compensation has been added for the stability of the ballbot. As a result, the control system can stabilize all state variables of the ballbot system despite the uncertainties of the system parameters such as model, friction, and external disturbances, and relatively large body inertia. Experiments demonstrate the effectiveness of the proposed control system and the performance validation of the nonlinear double-loop control.

Keywords

Ridable ballbot Hierarchical sliding mode control Underactuated system Double-loop control system PI control 

List of symbols

ma

Mass of the body

mk

Mass of the ball

Ik

Moment of inertia of the ball

Ix, Iy

Moments of inertia of the body about the x- and y-axes

l

Distance from the mass center of the body to that of the ball

rk

Radius of the ball

rw

Radius of the omnidirectional wheel

Iw

Moment of inertia of each omnidirectional wheel

α

Zenith angle

xk, yk

Position of the ball

θx, θy

Roll and pitch angles of the body

τx, τy

Corresponding resultant toques of the motors to the x- and y-axes

brx, bry, bx, by

Friction factors

g

The gravity acceleration

Notes

Acknowledgements

This research was partly supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1A2C2010195); and by the Ministry of Science and ICT, Korea, under the Grand Information Technology Research Center support program (IITP-2018-2015-0-00742) supervised by the IITP. It was also supported by the Senior-friendly Product R&D program funded by the Ministry of Health and Welfare through the Korea Health Industry Development Institute (KHIDI) (HI15C1027).

References

  1. 1.
    Ba, P. D., Lee, S. G., Back, S., Kim, J., & Lee, M. K. (2016). Balancing and translation control of a ball segway that a human can ride. In 16th International conference on control, automation and systems (ICCAS) (pp. 477–480).Google Scholar
  2. 2.
    Aphiratsakun, N., Remi Nordeng, P. K., Suikkanen, M., & Lorpatanakasem, N. (2014). Implementation of AU balancing ballbot. In International electrical engineering congress (iEECON) (pp. 1–4).Google Scholar
  3. 3.
    Han, H. Y., Han, T. Y., & Jo, H. S. (2014). Development of omnidirectional self-balancing robot. In IEEE international symposium on robotics and manufacturing automation (ROMA) (pp. 57–62).Google Scholar
  4. 4.
    Vaidya, B., Shomin, M., Hollis, R., & Kantor, G. (2015). Operation of the ballbot on slopes and with center-of-mass offsets. In IEEE international conference on robotics and automation (ICRA) (pp. 2383–2388).Google Scholar
  5. 5.
    Kumaga, M., & Ochiai, T. (2009). Development of a robot balanced on a ball and application of passive motion to transport. In IEEE international conference on robotics and automation (ICRA) (pp. 4106–4111).Google Scholar
  6. 6.
    Tsai, C. C., Chan, C. K., & Kuo, L. C. (2012). LQR motion control of a ball-riding robot. In IEEE/ASME international conference on advanced intelligent mechatronics (AIM) (pp. 861–866).Google Scholar
  7. 7.
    Lotfiani, A., Keshmiri, M., & Danesh, M. (2013). Dynamic analysis and control synthesis of a spherical wheeled robot (ballbot). In 1st RSI/ISM international conference on robotics and mechatronics (ICRoM) (pp. 481–486).Google Scholar
  8. 8.
    Zabihi, H., Talebi, H. A., & Suratgar, A. A. (2016). Open-loop trajectory planning and nonlinear control for underactuated spherical wheel mobile robot (ballbot). In 24th Iranian conference on electrical engineering (ICEE) (pp. 549–554).Google Scholar
  9. 9.
    Inal, A. N., Morgul, O., & Saranli, U. (2012). A 3D dynamic model of a spherical wheeled self-balancing robot. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5381–5386).Google Scholar
  10. 10.
    Jian, J., Wang, M., Lv, N., Yang, Y., Zhang, K., Li, Y., & Liu, T. (2014). Standing-up control and ramp-climbing control of a spherical wheeled robot. In 13th International conference on control automation robotics and vision (ICARCV) (pp. 1386–1391).Google Scholar
  11. 11.
    Peng, Y.-F., Chiu, C.-H., Tsai, W.-R., & Chou, M.-H. (2009). Design of an omni-directional spherical robot: using fuzzy control. In International multiconference of engineers and computer scientists (Vol. I, No. IMECS, p. 6).Google Scholar
  12. 12.
    Chih-Hui, C., & Wen-Ru, T. (2015). Design and implementation of an omnidirectional spherical mobile platform. IEEE Transactions on Industrial Electronics, 62(3), 1619–1628.CrossRefGoogle Scholar
  13. 13.
    Tsai, C.-C., Chiang, C.-H., Tai, F.-C., & Hwang, K.-S. (2015). Adaptive RFWCMAC cooperative formation control for multiple ballbots incorporated with coupling dynamics. In International conference on informative and cybernetics for computational social systems (ICCSS) (pp. 59–65).Google Scholar
  14. 14.
    Pham, D. B., & Lee, S.-G. (2018). Aggregated hierarchical sliding mode control for a spatial ridable ballbot. International Journal of Precision Engineering and Manufacturing, 19(9), 1291–1302.CrossRefGoogle Scholar
  15. 15.
    Spong, M. W., Corke, P., & Lozano, R. (2001). Nonlinear control of the reaction wheel pendulum. Automatica, 37(11), 1845–1851.CrossRefzbMATHGoogle Scholar
  16. 16.
    Tuan, L. A., Lee, S.-G., Nho, L. C., & Kim, D. H. (2013). Model reference adaptive sliding mode control for three dimensional overhead cranes. International Journal of Precision Engineering and Manufacturing, 14(8), 1329–1338.CrossRefGoogle Scholar
  17. 17.
    Tuan, L. A., Kim, J.-J., Lee, S.-G., Lim, T.-G., & Nho, L. C. (2014). Second-order sliding mode control of a 3D overhead crane with uncertain system parameters. International Journal of Precision Engineering and Manufacturing, 15(5), 811–819.CrossRefGoogle Scholar
  18. 18.
    Tuan, L. A., Lee, S.-G., Ko, D. H., & Nho, L. C. (2014). Combined control with sliding mode and partial feedback linearization for 3D overhead cranes. International Journal Robust Nonlinear Control, 24, 3372–3386.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zou, Y. (2017). Nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors. International Journal of Robust and Nonlinear Control, 27, 925–941.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhao, B., Xian, B., Zhang, Y., & Zhang, X. (2015). Nonlinear robust sliding mode control of a quadrotor unmanned aerial vehicle based on immersion and invariance method. International Journal Robust Nonlinear Control, 25, 3714–3731.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liao, C.-W., Tsai, C.-C., Li, Y. Y., & Chan, C.-K. (2008). Dynamic modeling and sliding-mode control of a Ball robot with inverse mouse-ball drive. In SICE annual conference (pp. 2951–2955).Google Scholar
  22. 22.
    Pham, D. B., & Lee, S.-G. (2019). Hierarchical sliding mode control for 2D Ball Segway that is a class of second-order underactuated system. Journal of Vibration and Control, 25(1), 72–83.Google Scholar
  23. 23.
    Chan, C.-K., & Tsai, C.-C. (2012). Intelligent backstepping sliding-mode control using recurrent interval type 2 fuzzy neural networks for a ball robot with a four-motor inverse-mouse ball drive. In Proceedings of SICE annual conference (SICE) (pp. 1281–1286).Google Scholar
  24. 24.
    Garcia-Garcia, R. A., & Arias-Montiel, M. (2016). Linear controllers for the NXT ballbot with parameter variations using linear matrix inequalities [lecture notes]. IEEE Control Systems, 36(3), 121–136.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tsai, C.-C., Juang, M.-H., Chan, C.-K., Liao, C.-W., & Chan, S.-J. (2010). Self-balancing and position control using multi-loop approach for ball robots. In International conference on system science and engineering (ICSSE) (pp. 251–256).Google Scholar
  26. 26.
    Lauwers, T. B., Kantor, G. A., & Hollis, R. L. (2006). A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive. In Proceedings 2006 IEEE international conference on robotics and automation (ICRA) (pp. 2884–2889).Google Scholar
  27. 27.
    Nagarajan, U., Kantor, G., & Hollis, R. (2014). The ballbot: An omnidirectional balancing mobile robot. The International Journal of Robotics Research, 33(6), 917–930.CrossRefGoogle Scholar
  28. 28.
    Sukvichai, K., & Parnichkun, M. (2014). Double-level ball-riding robot balancing: From system design, modeling, controller synthesis, to performance evaluation. Mechatronics, 24(5), 519–532.CrossRefGoogle Scholar
  29. 29.
    Pham, D. B., Kim, H., Kim, J., & Lee, S. G. (2018). Balancing and transferring control of a Ball Segway using a double-loop approach [applications of control]. IEEE Control Systems, 38(2), 15–37.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Slotine, J. J. E., & Li, W. (1991). Applied nonlinear control (p. 461). Upper Saddle River: Prentice-Hall, Inc.zbMATHGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVietnam Maritime UniversityHai PhongVietnam
  2. 2.Korea Gas CorporationIncheonSouth Korea
  3. 3.School of Mechanical EngineeringKyung Hee UniversityYongin-siSouth Korea
  4. 4.School of Mechanical and Aerospace EngineeringSejong UniversitySeoulKorea

Personalised recommendations