Advertisement

A Comparative Study of Non-destructive Evaluation of Glass Fiber Reinforced Polymer Composites Using Terahertz, X-ray, and Ultrasound Imaging

  • Jie Wang
  • Jin ZhangEmail author
  • Tianying Chang
  • Hong-Liang Cui
Regular Paper
  • 28 Downloads

Abstract

A set of samples of glass fiber reinforced polymer composites with Teflon inclusions in the shape of pentagram have been specifically designed and fabricated for the purpose of assessing the efficacy and practicality of terahertz (THz) time domain spectroscopy (TDS) system in non-destructive evaluation (NDE), in side-by-side comparison with X-ray computed tomography (CT), and ultrasonic imaging. The samples feature systematic variation of Teflon inclusions of a variety of thicknesses and placement depths. An improved THz imaging algorithm is proposed and demonstrated to enhance the capability of THz-TDS detection by adding an appropriate window for sampling the reflected time-domain waveform a posteriori. Additionally, image fusion algorithm based on block segmentation is applied to combine multiple imaging detection results, leading to further improvement of the final defect detection capability. Comparative analysis of the detection results among THz-TDS, X-ray CT, and ultrasonic imaging is carefully carried out to assess the merits and disadvantages of each technique, and to attempt to find a proper place for THz-TDS imaging in the traditional arsenal of NDE tools.

Keywords

Glass fiber reinforced polymer composites Terahertz X-ray Ultrasound Window-based image processing Image fusion 

List of Symbols

\(d\)

Thickness of the sample

\(c\)

The THz wave propagation speed in air

\(n_s\)

The refractive index of the sample

\(\Delta t\)

The time delay difference

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2015CB755401), National Natural Science Foundation of China (61705120), Department of Science & Technology of the Shandong Province (2017GGX10124, 2017GGX10108), Youth Science Funds of Shandong Academy of Sciences (2017QN0015), and Innovation Program of Shandong Academy of Sciences.

References

  1. 1.
    Burgueño, R., Karbhari, V. M., Seible, F., & Kolozs, R. T. (2001). Experimental dynamic characterization of an FRP composite bridge superstructure assembly. Composite Structures, 54(4), 427–444.CrossRefGoogle Scholar
  2. 2.
    Berry, M., & Johnson, J. (2016). Effect of cold temperatures on the behavior and ultimate capacity of GFRP-reinforced concrete beams. Cold Regions Science and Technology, 136, 9–16.CrossRefGoogle Scholar
  3. 3.
    Schilling, P. J., Karedla, B. P. R., Tatiparthi, A. K., Verges, M. A., & Herrington, P. D. (2005). X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Composites Science and Technology, 65(14), 2071–2078.CrossRefGoogle Scholar
  4. 4.
    Thi, T. B. N., Morioka, M., Yokoyama, A., Hamanaka, S., & Yamashita, K. (2015). Measurement of fiber orientation distribution in injection-molded short-glass-fiber composites using X-ray computed tomography. Journal of Materials Processing Technology, 219, 1–9.CrossRefGoogle Scholar
  5. 5.
    Zhu, W., Rose, J. L., Barshinger, J. N., & Agarwal, V. S. (1998). Ultrasonic guided wave NDT for hidden corrosion detection. Research in Nondestructive Evaluation, 10(4), 205–225.CrossRefGoogle Scholar
  6. 6.
    Liu, L. D., & Wu, X. (2014). Defect types and ultrasonic nondestructive testing for fiber-reinforced composites. In Yarlagadda, P., & Kim, Y. H. (Eds.), Advanced materials research (Vol. 834–836, pp. 233–236).Google Scholar
  7. 7.
    Palka, N., & Panowicz, R. (2016). Non-destructive evaluation of puncture region in polyethylene composite by terahertz and X-ray radiation. Composites Part B, 92, 315–325.CrossRefGoogle Scholar
  8. 8.
    Dong, J., Kim, B., Locquet, A., McKeon, P., Declercq, N., & Citrin, D. (2015). Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Composites Part B, 79, 667–675.CrossRefGoogle Scholar
  9. 9.
    Chady, T., & Lopato, P. (2010). Testing of glass-fiber reinforced composite materials using terahertz technique. International Journal of Applied Electromagnetics & Mechanics, 33(33), 1599–1605.CrossRefGoogle Scholar
  10. 10.
    Hsu, D. K., Lee, K. S., Park, J. W., Woo, Y. D., & Im, K. H. (2012). NDE inspection of terahertz waves in wind turbine composites. International Journal of Precision Engineering and Manufacturing, 13(7), 1183–1189.CrossRefGoogle Scholar
  11. 11.
    Im, K. H., Lee, K. S., Yang, I. Y., Yang, Y. J., & Seo, Y. H. (2013). Advanced T-ray nondestructive evaluation of defects in FRP solid composites. International Journal of Precision Engineering and Manufacturing, 14(6), 1093–1098.CrossRefGoogle Scholar
  12. 12.
    Park, J. W., Im, K. H., Yang, I. Y., Kim, S. K., & Kang, S. J. (2014). Terahertz radiation NDE of composite materials for wind turbine applications. International Journal of Precision Engineering and Manufacturing, 15(6), 1247–1254.CrossRefGoogle Scholar
  13. 13.
    Zhang, J., Shi, C. C., Ma, Y. T., Han, X. H., Li, W., Chang, T. Y., et al. (2015). Spectroscopic study of terahertz reflection and transmission properties of carbon-fiber-reinforced plastic composites. Optical Engineering, 54(5), 54106.CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Li, W., Cui, H. L., Shi, C. C., Han, X. H., Ma, Y. T., et al. (2016). Nondestructive evaluation of carbon fiber reinforced polymer composites using reflective terahertz imaging. Sensors, 16(6), 875–887.CrossRefGoogle Scholar
  15. 15.
    Rutz, F., & Koch, M. (2017). Terahertz quality control of polymeric products. International Journal of Infrared and Millimeter Waves, 27(4), 547–556.CrossRefGoogle Scholar
  16. 16.
    Stoik, C., Bohn, M., & Blackshire, J. (2008). Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Optics Express, 16(21), 17039–17051.CrossRefGoogle Scholar
  17. 17.
    Stoik, C., Bohn, M., & Blackshire, J. (2010). Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy. NDT and E International, 43(2), 106–115.CrossRefGoogle Scholar
  18. 18.
    Ospald, F., Zouaghi, W., Beigang, R. & Matheis, C. (2013). Aeronautics Composite Material Inspection with a Terahertz Time-domain Spectroscopy System. Optical Engineering, 53, 031208.CrossRefGoogle Scholar
  19. 19.
    Dong, J. L., Locquet, A., & Citrin, D. S. (2016). Enhanced terahertz imaging of small forced delamination in woven glass fibre-reinforced composites with wavelet de-noising. Journal of Infrared, Millimeter, and Terahertz Waves, 37(3), 289–301.CrossRefGoogle Scholar
  20. 20.
    Ryu, C. H., Park, S. H., Kim, D. H., Jhang, K. Y., & Kim, H. S. (2016). Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy. Composite Structures, 156, 338–347.CrossRefGoogle Scholar
  21. 21.
    Zhang, J., Wang, J., Han, X. H., & Cui, H. L. (2016). Noncontact detection of teflon inclusions in glass-fiber-reinforced polymer composites using terahertz imaging. Applied Optics, 55(36), 10215–10222.CrossRefGoogle Scholar
  22. 22.
    Kim, D. H., Ryu, C. H., Park, S. H., & Kim, H. S. (2017). Nondestructive evaluation of hidden damages in glass fiber reinforced plastic by using the terahertz spectroscopy. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(2), 211–219.CrossRefGoogle Scholar
  23. 23.
    Matheisa, C., Wohnsiedlera, S., Ospalda, F., & Cristofanib, E. (2014). Terahertz FMCW inspection of GFRP composites: Comparison with conventional NDT techniques and enhanced defect detection capability through. In Microwave conference (pp. 1–4).Google Scholar
  24. 24.
    Yang, R., He, Y., & Zhang, H. (2016). Progress and trends in nondestructive testing and evaluation for wind turbine composite blade. Renewable and Sustainable Energy Reviews, 60, 1225–1250.CrossRefGoogle Scholar
  25. 25.
    Mittleman, D. M., Hunsche, S. & Nuss, M. C. (1997) T-ray tomography. Optics Letters, 22(12), 905–906CrossRefGoogle Scholar
  26. 26.
    Lopato, P. (2017). Double-sided terahertz imaging of multilayered glass fiber-reinforced polymer. Applied Sciences, 7(7), 661–675.CrossRefGoogle Scholar
  27. 27.
    Amolins, K., & Zhang, P. (2007). Wavelet based image fusion techniques—An introduction, review and comparison. ISPRS Journal of Photogrammetry, 62(4), 249–263.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.College of Instrumentation and Electrical EngineeringJilin UniversityChangchunChina
  2. 2.Institute of AutomationQilu University of Technology (Shandong Academy of Sciences)JinanChina
  3. 3.Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqingChina

Personalised recommendations