Advertisement

Application of KLM Model for an Ultrasonic Through-Transmission Method

  • Geonwoo Kim
  • Mu-Kyung Seo
  • Namkyoung Choi
  • Kwang Sae Baek
  • Ki-Bok KimEmail author
Regular Paper

Abstract

KLM model has been widely used for designing PZT based ultrasonic transducers by using an ultrasonic pulse-echo method in the field of non-destructive testing. In this study, to apply the KLM model for an ultrasonic through-transmission method, transmitting and receiving ultrasonic transducers, which have different resonance frequency, were simulated and acquired the through-transmitted ultrasonic waveforms. To verify and analyze the KLM model based ultrasonic through-transmission method, an ultrasonic through-transmission system including PZT based ultrasonic transducers, pulser/receiver, a test specimen was constructed and compared with through-transmitted response signals of fabricated ultrasonic transducers based on the same conditions of the KLM simulation.

Keywords

KLM model Ultrasonic through-transmission method Ultrasonic transducer PZT 

Notes

Acknowledgements

This research was carried out with the support of the project development of rail-damage detection inspection and monitoring system for advanced prevention railway obstruction (18RTRP-B113566-03) among the railroad technology research projects supported by the Korea Agency for infrastructure Technology Advancement (KAIA).

Supplementary material

12541_2019_50_MOESM1_ESM.pdf (37 kb)
Supplementary material 1 (PDF 36 kb)

References

  1. 1.
  2. 2.
    Birks, A. S., Green, Jr., R. E., & McIntire, P. (1991). Nondestructive testing handbook, 2nd edn. (Vol. 7 Ultrasonic Testing, pp. 147–155, 268–281). ASTN.Google Scholar
  3. 3.
    Desilets, C. S., Fraser, J. D., & Kino, G. S. (1978). The design of efficient broad-band piezoelectric transducers. IEEE Transactions on Sonics and Ultrasonics, 25(4), 115–125.CrossRefGoogle Scholar
  4. 4.
    Guo, H., Cannata, J. M., Zhou, Q., & Shung, K. K. (2005). Design and fabrication of broadband graded ultrasonic transducers with rectangular kerfs. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52(11), 2096–2102.CrossRefGoogle Scholar
  5. 5.
    Mason, W. P. (2007). Electromechanical transducers and wave filters (pp. 22–75). New York: D. Van Nostrand Co.Google Scholar
  6. 6.
    Krimholtz, R., Leedom, D. A., & Mattaei, G. L. (1970). New equivalent circuits for elementary piezoelectric transducers. Electronics Letters, 6(13), 398–399.CrossRefGoogle Scholar
  7. 7.
    Kim, J. Y., Jacobsa, L. J., Qu, J., & Littles, J. W. (2006). Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. The Journal of Acoustical Society of America, 120(3), 1266–1273.CrossRefGoogle Scholar
  8. 8.
    Sherrit, S., Leary, S. P., Dolgin, B. P., & Bar-Cohen, Y. (1999). Comparison of the Mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode. In IEEE ultrasonics symposium, Caesars Tahoe, Nevada, USA, 17–20 Oct 1999.Google Scholar
  9. 9.
    Castillo, M., Acevedo, P., & Moreno, E. (2003). KLM model for lossy piezoelectric transducers. Ultrasonics, 41(8), 671–679.CrossRefGoogle Scholar
  10. 10.
    Van Kervel, S. J. H., & Thijssen, J. M. (1983). A calculation scheme for the optimum design of ultrasonic transducers. Ultrasonics, 21(3), 134–140.CrossRefGoogle Scholar
  11. 11.
    Kossoff, G. (1966). The effects of backing and matching on the performance of piezoelectric ceramic transducers. IEEE Transactions on Sonics and Ultrasonics, 13(1), 20–30.CrossRefGoogle Scholar
  12. 12.
    Kim, K. B., Hsu, D. K., Ahn, B., Kim, Y. G., & Barnard, D. J. (2010). Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1–3 composite ultrasonic transducers for NDE applications. Ultrasonics, 50(8), 790–797.CrossRefGoogle Scholar
  13. 13.
    Kim, K. B., Ahn, B., Kim, Y. G., Park, S. K., & Ha, J. S. (2007). Study on ultrasonic transducer for non-destructive evaluation of highly attenuative material using PMN-PT single crystal. Journal of KSNT, 27(4), 313–320.Google Scholar
  14. 14.
    Kim, Y. I., Kim, G., Bae, Y. M., Ryu, Y. H., Jeong, K. J., Oh, C. H., et al. (2015). Comparison of PMN-PT and PZN-PT single-crystal-based ultrasonic transducers for nondestructive evaluation applications. Sensors and Materials, 27(1), 107–114.Google Scholar
  15. 15.
    Kino, G. S. (1987). Acoustic waves, device, “imaging & analog signal processing” (pp. 31–83). Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar
  16. 16.
    Crewe, M. G., Gururaja, T. R., Shrout, T. R., & Newnham, R. E. (1990). Acoustic properties of particle/polymer composites for ultrasonic transducer backing applications. IEEE Transactions on Ferroelectrics and Frequency Control, 37(6), 506–513.CrossRefGoogle Scholar
  17. 17.
    Kim, J. Y., Jacobs, L. J., Qu, J., & Littles, J. W. (2006). Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. The Journal of the Acoustical Society of America, 120(3), 1266–1273.CrossRefGoogle Scholar
  18. 18.
    Lee, T. H., & Jhang, K. Y. (2008). Evaluation of micro crack using nonlinear acoustic effect. Journal of the Korean Society for Nondestructive Testing, 28(4), 352–357.Google Scholar
  19. 19.
    Sohn, H., Lim, H. J., DeSimio, M. P., Brown, K., & Derriso, M. (2014). Nonlinear ultrasonic wave modulation for online fatigue crack detection. Journal of Sound and Vibration, 333(5), 1473–1484.CrossRefGoogle Scholar
  20. 20.
    Schmerr, L. W., Jr., & Song, S. J. (2007). Ultrasonic nondestructive evaluation systems: models and measurements (pp. 21–34). New York: Springer.CrossRefGoogle Scholar
  21. 21.
    Zhang, Q., Lewin, P. A., & Bloomfield, P. E. (1997). PVDF transducers: A performance comparison of single-layer and multilayer structures. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44(5), 1148–1156.CrossRefGoogle Scholar
  22. 22.
    Petersen, G. (2006). L-matching the output of a RITEC gated amplifier to an arbitrary load. Warwick: RITEC Inc.Google Scholar
  23. 23.
    Garcia-Rodriguez, M., Garcia-Alvarez, J., Yañez, Y., Garcia-Hernandez, M. J., Salazar, J., Turo, A., et al. (2010). Low cost matching network for ultrasonic transducers. Physics Procedia, 3(1), 1025–1031.CrossRefGoogle Scholar
  24. 24.
    Svilainis, L., & Dumbrava, V. (2007). Evaluation of the ultrasonic transducer electrical matching performance. Ultragarsas, 62(4), 16–21.Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  • Geonwoo Kim
    • 1
  • Mu-Kyung Seo
    • 2
  • Namkyoung Choi
    • 1
  • Kwang Sae Baek
    • 3
  • Ki-Bok Kim
    • 1
    • 2
    Email author
  1. 1.Department of Science of MeasurementUniversity of Science and TechnologyDaejeonSouth Korea
  2. 2.Center for Safety MeasurementKorea Research Institute of Standards and ScienceDaejeonSouth Korea
  3. 3.Elachem Co. Ltd.BusanSouth Korea

Personalised recommendations