Advertisement

Methods to Eliminate Surging Motion in a Conveyor System Considering Industrial Case Studies

  • Jeongae Bak
  • Youngsoo Kim
  • Kijung Kim
  • Jongwon Kim
  • Sangrok JinEmail author
  • TaeWon SeoEmail author
Regular Paper

Abstract

Conveyor surging, a phenomenon in which the conveyor repeatedly moves and stops, causes inconvenience to workers and reduces the quality of manufacturing. It is difficult to anticipate the surging motion because it occurs owing to the combination of several causes such as inertia, friction, and motor power. This paper reports on a dynamic simulation of a conveyor system to predict and eliminate the surging motion. The dynamic model of a conveyor system is based on a multimass, spring-damper system to reflect the characteristics of the real conveyor system. The surging motion is considered a stick–slip motion, in which the stick–slip is primarily caused by friction. Stribeck friction is applied to model the stick–slip motion. In the model, lubrication, motor capacity, and polygonal effects are included to simulate the actual surging motion precisely. Based on the model, we analyzed three industrial cases involving surging and nonsurging motions. For the surging cases, we investigate the primary causes of the surging motion and suggest a method to achieve the motion without surging. We expect the model to be useful in designing an improved conveyor belt without surging motion.

Keywords

Chain conveyor Conveyor modeling Surging motion Multimass spring damper system Stick–slip 

Notes

References

  1. 1.
    Barre, P. J., Bearee, R., Borne, P., & Dumetz, E. (2005). Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems. Journal of Intelligent and Robotic Systems, 42(3), 275–293.CrossRefGoogle Scholar
  2. 2.
    Tsubaki Chain Co. (1997). The complete guide to chain. Tsubaki, USA.Google Scholar
  3. 3.
    Winkler, G. (1978). Analysing the vibrating conveyor. International Journal of Mechanical Sciences, 20(9), 561–570.CrossRefGoogle Scholar
  4. 4.
    Arolews, K., Ki, B., & Ligocki, P. (2014). Modelling of long belt conveyors. Eksploatacja i Niezawodnosc—Maintenance and Reliability, 16(2), 179–187.Google Scholar
  5. 5.
    Sándor, B., Járai-Szabó, F., Tél, T., & Néda, Z. (2013). Chaos on the conveyor belt. Physical Review E, 87(4), 0429207.CrossRefGoogle Scholar
  6. 6.
    Bo, L. C., & Pavelescu, D. (1982). The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear, 82(3), 277–289.CrossRefGoogle Scholar
  7. 7.
    Carlson, J. M., & Langer, J. S. (1989). Mechanical model of an earthquake fault. Physical Review A, 40(11), 6470.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sergienko, O. V., MacAyeal, D. R., & Bindschadler, R. A. (2009). Stick–slip behavior of ice streams: Modeling investigations. Annals of Glaciology, 50(52), 87–94.CrossRefGoogle Scholar
  9. 9.
    Ritto, T. G., Aguiar, R. R., & Hbaieb, S. (2017). Validation of a drill string dynamical model and torsional stability. Meccanica, 52(11–12), 2959–2967.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Olsson, H., Åström, K. J., Canudas De Wit, C., Gäfvert, M., & Lischinsky, P. (1998). Friction models and friction compensation. European Journal of Control, 4(3), 176–195.CrossRefzbMATHGoogle Scholar
  11. 11.
    Bastien, J., Michon, G., Manin, L., & Dufour, R. (2007). An analysis of the modified Dahl and Masing models: Application to a belt tensioner. Journal of Sound and Vibration, 302(4–5), 841–864.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, Y. F., Li, J., Zhang, Z. M., Hu, X. H., & Zhang, W. J. (2015). Experimental comparison of five friction models on the same test-bed of the micro stick-slip motion system. Mechanical Sciences, 6(1), 15–28.CrossRefGoogle Scholar
  13. 13.
    Popp, K., & Stelter, P. (1990). Stick-slip vibrations and chaos. Philosophical Transactions of the Royal Society of London A, 332(1624), 89–105.CrossRefzbMATHGoogle Scholar
  14. 14.
    Pratt, T. K., & Williams, R. (1981). Non-linear analysis of stick/slip motion. Journal of Sound and Vibration, 74(4), 531–542.CrossRefGoogle Scholar
  15. 15.
    Hundal, M. S. (1979). Response of a base excited system with Coulomb and viscous friction. Journal of Sound and Vibration, 64(3), 371–378.CrossRefzbMATHGoogle Scholar
  16. 16.
    Jacobsen L. S. (1931). Forced vibration with combined coulomb and viscous friction. Trans. ASME Paper APM, pp. 53–9.Google Scholar
  17. 17.
    Armstrong-Helouvry, B. (1991). Control of machines with friction. MA: Kluwer Boston.CrossRefzbMATHGoogle Scholar
  18. 18.
    Lodewijks, G. (1996). Dynamics of belt systems. Doctorate, Delft University of Technology.Google Scholar
  19. 19.
    Ogata, K. (1998). System dynamics. Upper Saddle River, NJ: Pearson Prentice Hall.zbMATHGoogle Scholar
  20. 20.
    Wang, Y., Ji, D., & Zhan, K. (2013). Modified sprocket tooth profile of roller chain drives. Mechanism and Machine Theory, 70, 380–393.CrossRefGoogle Scholar
  21. 21.
    Mahalingam, S. (1958). Polygonal action in chain drives. Journal of the Franklin Institute, 265(1), 23–28.CrossRefGoogle Scholar
  22. 22.
    Pedersen, S. L. (2005). Model of contact between rollers and sprockets in chain-drive systems. Archive of Applied Mechanics, 74(7), 489–508.CrossRefzbMATHGoogle Scholar
  23. 23.
    Banerjee, A. K. (1968). Influence of kinetic friction on the critical velocity of stick-slip motion. Wear, 12(2), 107–116.CrossRefGoogle Scholar
  24. 24.
    Tsubaki. (1991). Tsubaki marine engine roller chain, maintenance manual. In Catalog (Vol. 1211). Retrieved from http://pdf.directindustry.com/pdf/tsubakimoto-chain/tsubaki-marine-engine-roller-chain/5083-586802-_12.html. Accessed 20 May 2018.
  25. 25.
    Zuleeg J. (2015). How to measure, prevent, and eliminate Stick-Slip and noise generation with lubricants. SAE Technical Paper, No. 2015-01-2259.Google Scholar
  26. 26.
    Anton Paar. (2015). Tips and tricks from joe flow—stribeck curves: A powerful screening tool for tribology in a nutshell [PDF file]. Retrieved from http://www.world-of-rheology.com/fileadmin/public/rheology/Tips_Tricks_Joe_Flow/XRRIA021EN-A_Joe_Flow_Stribeck_Curves.pdf. Accessed 7 Sept 2018.

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSeoul Nat’l UniversitySeoulRepublic of Korea
  2. 2.School of Mechanical EngineeringPusan Nat’l UniversityBusanRepublic of Korea
  3. 3.School of Mechanical EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations