Advertisement

Analysis of the Variation of the Discharge Circuit Parameters During Electromagnetic Forming Processes

  • Shantaram DondEmail author
  • Hitesh Choudhary
  • Tanmay Kolge
  • Archana Sharma
Regular Paper
  • 12 Downloads

Abstract

Discharge circuit parameters vary during the electromagnetic forming process. The variation of these parameters with time during the electromagnetic tube expansion is analyzed here. A coupled analytical model is developed to predict the parametric variation of discharge circuit and corresponding tube radial displacement. In the analytical model, discharge current updated in response to tube deformation at each time step. The electromagnetic forming experiment is performed on 1.5 mm thick aluminum tube using 7 turns helical coil to validate the analytical model. Analytically estimated variation of inductance, resistance and the current waveform of the discharge circuit are well agreed with experimental observations. A 2D sequentially coupled simulation model is also developed using COMSOL, and the simulations results are compared with analytical and experimental results. It is observed that the error in estimated tube displacement is reduced from 17 to 9% when the dynamic nature of discharge circuit parameters is considered in the input excitation of the numerical model.

Keywords

Discharge circuit Electromagnetic tube forming Numerical simulation Plastic deformation Sequential coupling 

Notes

References

  1. 1.
    Golovashchenko, S. (2006). Electromagnetic forming and joining for automotive applications. In Proceedings of the 2nd international conference on high speed forming, Dortmund, Germany.Google Scholar
  2. 2.
    Rajak, A. K., Kumar, R., Basumatary, H., & Kore, S. D. (2018). Numerical and experimental study on effect of different types of field-shaper on electromagnetic terminal-wire crimping process. International Journal of Precision Engineering and Manufacturing, 19(3), 453–459.CrossRefGoogle Scholar
  3. 3.
    Weddeling, C., Demir, O. K., Haupt, P., & Tekkaya, A. E. (2015). Analytical methodology for the process design of electromagnetic crimping. Journal of Materials Processing Technology, 222, 163–180.CrossRefGoogle Scholar
  4. 4.
    Yu, H., Chen, J., Liu, W., Yin, H., & Li, C. (2018). Electromagnetic forming of aluminum circular tubes into square tubes: Experiment and numerical simulation. Journal of Materials Processing Technology, 31, 613–623.Google Scholar
  5. 5.
    Cui, X., Mo, J., Li, J., & Xiao, X. (2017). Tube bulging process using multidirectional magnetic pressure. International Journal of Advanced Manufacturing Technology, 90(5-8), 2075–2082.CrossRefGoogle Scholar
  6. 6.
    Chaharmiri, R., & Arezoodar, A. (2016). The effect of sequential coupling on radial displacement accuracy in electromagnetic inside-bead forming: Simulation and experimental analysis using Maxwell and ABAQUS Software. Journal of Mechanical Science and Technology, 30(5), 2005–2010.CrossRefGoogle Scholar
  7. 7.
    Yu, H., Li, C., & Deng, J. (2009). Sequential couplingsimulation for electromagnetic mechanical tube compression by finite element analysis. Journal of Materials Processing Technology, 209(2), 707–713.CrossRefGoogle Scholar
  8. 8.
    Li, C., & Yu, H. (2005). State of the art of study of electromagnetic forming theory. Journal of Plasticity Engineering, 12(5), 1–7.Google Scholar
  9. 9.
    Oliveira, D. A., Worswick, M. J., Finn, M., & Newman, D. (2005). Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model. Journal of Materials Processing Technology, 170(1–2), 350–362.CrossRefGoogle Scholar
  10. 10.
    Cui, X., Mo, J., Li, J., et al. (2013). Effect of second current pulse and different algorithms on simulation accuracy for electromagnetic sheet forming. The International Journal of Advanced Manufacturing Technology, 68(5), 1137–1146.CrossRefGoogle Scholar
  11. 11.
    Qiu, L., Xiao, Y., Deng, C., et al. (2017). Electromagnetic-structural analysis and improved loose coupling method in electromagnetic forming process. International Journal of Advanced Manufacturing Technology, 89(1), 701–710.CrossRefGoogle Scholar
  12. 12.
    Cao, Q., Li, L., Lai, Z., et al. (2014). Dynamic analysis of electromagnetic sheet metal forming process using finite element method. International Journal of Advanced Manufacturing Technology, 74(1), 361–368.CrossRefGoogle Scholar
  13. 13.
    Lal, G., & Hiller, M. (1968). The electrodynamics of electromagnetic forming. International Journal of Mechanical Sciences, 10, 491–500.CrossRefGoogle Scholar
  14. 14.
    Al-Hassani, S., Duncan, J., & Johnson, W. (1974). On the parameters of the magnetic forming process. The Journal of Mechanical Engineering Science, 16(1), 1–9.CrossRefGoogle Scholar
  15. 15.
    Knoepfel, H. (1970). Pulsed high magnetic fields. Amsterdam: North-Holland.Google Scholar
  16. 16.
    Plum, M. M. (1988). Electromagnetic forming. Metals handbook (9th ed., Vol. 14). Metals Park, OH: ASM.Google Scholar
  17. 17.
    Haratmeh, H. E., Arezoodar, A. F., & Farzin, M. (2017). Numerical and experimental investigation of inward tube electromagnetic forming. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1175–1185.CrossRefGoogle Scholar
  18. 18.
    Doley, J., & Kore, S. (2014). FEM study on electromagnetic formability of AZ31B magnesium alloy. In 6th international conference on high speed forming, Korea (pp. 273–280).Google Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Homi Bhabha National InstituteMumbaiIndia
  2. 2.Bhabha Atomic Research CentreMumbaiIndia

Personalised recommendations