Hold Time-Low Cycle Fatigue Behavior of Nickel Based Hastelloy X at Elevated Temperatures

  • Donghyun Yoon
  • Inkang Heo
  • Jaehoon KimEmail author
  • Sungyong Chang
  • Sungho Chang
Regular Paper


Hastelloy X, a material used in gas turbines, is subject to complex damage because of creep and fatigue in a high temperature environment during the operation of gas turbines. Although the low cycle behavior of Hastelloy X has been widely investigated, the number of studies focusing on the actual operating conditions of the gas turbine is limited. In this study, the total strain range of the gas turbine at 760 °C and 870 °C was considered as a parameter of the actual gas turbine operation. In addition, tests were performed with a trapezoidal waveform of the total strain to reflect the operation—stop status of the gas turbine with frequent shutdown times. The results of the fatigue test were studied with the Coffin-Manson method and the lifetime prediction equation was derived based on the data. Fractography was performed using scanning electron microscopy (SEM) observation.


Hastelloy X Elevated temperature Gas turbine Life prediction Low cycle fatigue Nickel base superalloy 

List of Symbols


Elastic strain range


Plastic strain range


Total strain range

\(\varepsilon_{f}^{\prime }\)

Fatigue-ductility coefficient


Fatigue-ductility exponent

\(\sigma_{f}^{\prime }\)

Fatigue-strength coefficient


Fatigue-strength exponent

\(\Delta W_{T}\)

Tensile-hysteresis energy


Maximum tensile stress

\(\Delta \varepsilon_{in}\)

Inelastic strain range


Cyclic-strain-hardening exponent

\(\Delta \sigma /2\)

Stress amplitude at half-life

\(\Delta \varepsilon_{p} /2\)

Plastic strain amplitude at half-life


Cyclic-strength coefficient


Number of fatigue cycles to failure



This work was supported by Korea Electric Power Corporation Research Institute.


  1. 1.
    Tomkins, B. (1981). Creep and fatigue in high temperature alloys. Applied Science Publication.Google Scholar
  2. 2.
    Runkle, J. C., & Pellous, R. M. (1978). Fatigue mechanisms. ASTM STP 675.Google Scholar
  3. 3.
    Lu, Y. L., Chen, L. J., Wang, G. Y., Benson, M. L., & Liaw, P. K. (2004). Hold-time effects on low-cycle-fatigue behavior of hastelloy X superalloy at high temperatures. In 10th international symposium in superalloys (pp. 19–23).Google Scholar
  4. 4.
    Kim, I. S., Choi, B. G., Jung, J. E., Do, J., & Jo, C. Y. (2015). Effect of microstructural characteristics on the low cycle fatigue behaviors of cast Ni-base superalloys. Materials Characterization, 106, 375–381.CrossRefGoogle Scholar
  5. 5.
    Klarstrom, D. L., & Lai, G. Y. (1988) Effects of aging on the LCF behavior of three solid-solution-strengthened superalloys. Superalloys (pp. 585–593).Google Scholar
  6. 6.
    Lee, S. Y., Lu, Y. L., Liaw, P. K., Chen, L. J., Thompson, S. A., Blust, J. W., et al. (2009). Tensile-hold low-cycle-fatigue properties of solid-solution-strengthened superalloys at elevated temperatures. Materials Science and Engineering A, 504, 64–72.CrossRefGoogle Scholar
  7. 7.
    Guo, B., Zhang, W., Li, S., & Wang, X. (2017). High temperature low cycle fatigue and creep-fatigue behavior of a casting Al-9Si-CuMg alloy used for cylinder heads. Materials Science and Engineering A, 700, 397–405.CrossRefGoogle Scholar
  8. 8.
    Shi, D., Liu, J., Yang, X., Qi, H., & Wang, J. (2010). Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures. Materials Science and Engineering A, 528, 233–238.CrossRefGoogle Scholar
  9. 9.
    Xiaoyan, W., Arnaud, D., Yaqing, H., & Sen, Y. (2016). Effect of thermomechanical processing on grain boundary character distribution of Hastelloy X alloy. Materials Science and Engineering A, 669, 95–102.CrossRefGoogle Scholar
  10. 10.
    ASTM E606/E606M-12. (2012). Standard test method for strain-controlled fatigue testing. ASTM International.Google Scholar
  11. 11.
    Grant, T. S., Dannemann, K., Chan, K. S., & Leverant, G. R. (1998). Blade life management system for GE frame 6B gas turbines. EPRI Palo Alto, CA and KEMA Nederland B.V.:, Report TR-109196-V2.Google Scholar
  12. 12.
    Ahmed, R., Barrett, P. R., & Hassan, T. (2016). Unified viscoplasticity modeling for isothermal low-cycle fatigue and fatigue-creep stress–strain responses of Haynes 230. International Journal of Solids and Structures, 88, 131–145.CrossRefGoogle Scholar
  13. 13.
    Barrett, P., Ahmed, R., Menon, M., & Hassan, T. (2016). Isothermal low-cycle fatigue and fatigue-creep of Haynes 230. International Journal of Solids and Structures, 88, 146–164.CrossRefGoogle Scholar
  14. 14.
    Gordon, A. P., Williams, E. P., & Schulist, M. (2008). Applicability of Neuber’s rule for thermomechanical fatigue. In ASME turbo expo 2008: Power for land, sea, and air. American Society of Mechanical Engineers.Google Scholar
  15. 15.
    Chen, X., Yang, Z., Sokolov, M. A., Erdman, D. L., III, Mo, K., & Stubbins, J. F. (2013). Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C. Materials Science and Engineering A, 563, 152–162.CrossRefGoogle Scholar
  16. 16.
    HAYNES International. (1997). Hastelloy® x alloy—Haynes International AG.Google Scholar
  17. 17.
    Strizak, J. P., Brinkman, C. R., & Rittenhouse, P. L. (1981). High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR HELIUM. Oak Ridge National Lab., TN (USA), No. CONF-810530-4.Google Scholar
  18. 18.
    Hiroshige, S., Iseki, T., & Shoda, Y. (1977). High-temperature low-cycle fatigue tests on Hastelloy X. Journal of Nuclear Science and Technology, 14, 381–386.CrossRefGoogle Scholar
  19. 19.
    Kim, D. W., Han, C. H., & Lee, B. S. (2009). Increase of low cycle fatigue life at 300°C for type 304 stainless steel. Korean Journal of Metals and Materials, 47, 391–396.CrossRefGoogle Scholar
  20. 20.
    Michael, G. C., Robert, V. M., & David, N. R. (1993). Thermomechanical deformation behavior of a dynamic strain aging alloy, Hastelloy X. Thermomechanical Fatigue Behavior of Materials, ASTM STP, 1186, 106–125.Google Scholar
  21. 21.
    Lee, K. O., Yoon, S., Hong, S. G., Kim, B. S., & Lee, S. B. (2004). Low cycle fatigue behavior of 429EM stainless steel at elevated temperature. Transactions of the Korean Society of Mechanical Engineers A, 28, 427–434.CrossRefGoogle Scholar
  22. 22.
    Lu, Y. L., Liaw, P. K., Chen, L. J., Wang, G. Y., Benson, M. L., Thompson, S. A., et al. (2006). Tensile-hold effects on high-temperature fatigue-crack growth in nickel-based HASTELLOY X alloy. Materials Science and Engineering A, 433, 114–120.CrossRefGoogle Scholar
  23. 23.
    Chen, G., Zhang, Y., Xu, D. K., Lin, Y. C., & Chen, X. (2016). Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C. Materials Science and Engineering A, 655, 175–182.CrossRefGoogle Scholar
  24. 24.
    Wang, M., Pang, J. C., Li, S. X., & Zhang, Z. F. (2017). Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Materials Science and Engineering A, 704, 480–492.CrossRefGoogle Scholar
  25. 25.
    Tawancy, H. M. (1983). Long-term ageing characteristics of Hastelloy alloy X. Journal of Materials Science, 18, 2976–2986.CrossRefGoogle Scholar
  26. 26.
    Ostergren, W. J. (1976). A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue. Journal of Testing and Evaluation, 4, 327–339.CrossRefGoogle Scholar
  27. 27.
    Polhemus, J. F., Spaeth, C. E., & Vogel., W. H. (1973). Ductility exhaustion model for prediction of thermal fatigue and creep interaction. Fatigue at elevated temperatures. ASTM International.Google Scholar
  28. 28.
    Zhu, S. P., Huang, H. Z., Li, H., Sun, R., & Zuo, M. J. (2011). A new ductility exhaustion model for high temperature low cycle fatigue life prediction of turbine disk alloys. International Journal of Turbo and Jet Engines, 28(2), 119–131.CrossRefGoogle Scholar
  29. 29.
    Zhu, S. P., Huang, H. Z., Liu, Y., Yuan, R., & He, L. (2013). An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory. International Journal of Damage Mechanics, 22(4), 556–571.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringChungnam National UniversityDaejeonRepublic of Korea
  2. 2.Korea Electric Power Corporation Research InstituteDaejeonRepublic of Korea

Personalised recommendations