Advertisement

Au-Coated Lanthanum Strontium Cobalt Ferrite Cathode for Lowering Sheet Resistance of a Solid Oxide Fuel Cell

  • Yoon Ho Lee
  • Sanghoon Lee
  • Jianhuang Zeng
  • Suk Won ChaEmail author
  • Ikwhang ChangEmail author
Regular Paper
  • 5 Downloads

Abstract

In this paper, we fabricate a thin film solid oxide fuel cell (SOFC) with a lanthanum strontium cobalt ferrite (LSCF) cathode which is coated with an Au layer by sputtering. The fabricated thin film SOFC has a 370-nm-thick Ni anode/880-nm-thick YSZ electrolyte/440-nm-thick LSCF cathode/130-nm-thick Au layer. The electrochemical performances of the thin film SOFC with the LSCF cathode coated with a 130-nm-thick Au layer and another SOFC without an Au layer are measured at the operating temperature of 600 °C. Since the LSCF cathode coated with a 130-nm-thick Au layer significantly lowers the sheet resistance (in-plane direction resistance), the peak power densities of the thin film SOFC with the LSCF cathode coated with a 130-nm-thick Au layer and the thin film SOFC with the LSCF cathode without a 130-nm-thick Au layer are 500 mW/cm2 and 49 mW/cm2, respectively. Due to the LSCF cathode coated with a 130-nm-thick Au layer, the peak power density of the thin film SOFC with the Au-coated LSCF cathode is 10 times higher than that of the LSCF cathode without Au layer.

Keywords

Thin film Solid oxide fuel cell Lanthanum strontium cobaltite ferrite Au Surface modification 

Notes

Acknowledgements

This paper was supported by Wonkwang University in 2018.

References

  1. 1.
    Ko, S. H., Kang, H. W., Nam, K. H., Yeo, J. Y., Hong, S. J., Grigoropoulos, C. P., et al. (2011). Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Letters, 11, 666–671.CrossRefGoogle Scholar
  2. 2.
    DaRosa, A. V. (2013). Fundamentals of renewable energy processes. Cambridge: Academic Press.Google Scholar
  3. 3.
    Yang, L., Wang, S., Blinn, K., Liu, M., Liu, Z., Cheng, Z., et al. (2009). Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–d. Science, 326, 126–129.CrossRefGoogle Scholar
  4. 4.
    Lee, Y. H., Chang, I., Cho, G. Y., Park, J., Yu, W., Tanveer, W., et al. (2018). Thin film solid oxide fuel cells operating below 600°C: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 441–453.CrossRefGoogle Scholar
  5. 5.
    Chang, I., Lee, M. H., Lee, J.-H., Kim, Y.-S., & Cha, S. W. (2013). Air-breathing flexible Polydimethylsiloxane (PDMS)-based fuel cell. International Journal of Precision Engineering and Manufacturing, 14, 501–504.CrossRefGoogle Scholar
  6. 6.
    Hong, S., Bae, J., Koo, B., Chang, I., Cho, G. Y., Kim, Y. B., et al. (2014). Nanostructuring methods for enhancing light absorption rate of Si-based photovoltaic devices: A review. International Journal of Precision Engineering and Manufacturing, 1, 67–74.CrossRefGoogle Scholar
  7. 7.
    Zhang, S., Yuan, X.-Z., Hin, J. N. C., Wang, H., Friedrich, K. A., & Schulze, M. (2009). A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. Journal of Power Sources, 194, 588–600.CrossRefGoogle Scholar
  8. 8.
    Lamy, C., Lima, A., LeRhun, V., Delime, F., Coutanceau, C., & LeÂger, J.-H. (2002). Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources, 105, 283–296.CrossRefGoogle Scholar
  9. 9.
    Chang, I., Ha, S., Kim, J., Lee, J., & Cha, S. W. (2008). Performance evaluation of passive direct methanol fuel cell with methanol vapour supplied through a flow channel. Journal of Power Sources, 184, 9–15.CrossRefGoogle Scholar
  10. 10.
    Williams, M. C., Strakey, J. P., & Surdoval, W. A. (2005). The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program. Journal of Power Sources, 143, 191–196.CrossRefGoogle Scholar
  11. 11.
    Williams, M. C., Strakey, J., & Sudoval, W. (2006). U.S. DOE fossil energy fuel cells program. Jounral of Power Sources, 159, 1241–1247.CrossRefGoogle Scholar
  12. 12.
    O’hayre, R., Cha, S. W., Colella, W., & Prinz, F. B. (2016). Fuel Cell Fundamentals. Hoboken: Wiley.CrossRefGoogle Scholar
  13. 13.
    Chang, I., Paek, J. Y., & Cha, S. W. (2015). Parametric study of Y-doped BaZrO3 thin film deposited via pulsed laser deposition. Journal of Vacuum Science and Technology A, 33, 021515.CrossRefGoogle Scholar
  14. 14.
    Ji, S., Hwang, Y. S., Park, T., Lee, Y. H., Paek, J. Y., Chang, I., et al. (2012). Graphite foil based assembled bipolar plates for polymer electrolyte fuel cells. International Journal of Precision Engineering and Manufacturing, 13, 2183–2186.CrossRefGoogle Scholar
  15. 15.
    Seinfeld, J. H., et al. (2004). Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bulletin of the American Meteorological Society, 85, 367–380.CrossRefGoogle Scholar
  16. 16.
    Shao, Z., et al. (2005). A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 435, 795–798.CrossRefGoogle Scholar
  17. 17.
    Kemik, N., et al. (2010). Synthesis and calorimetric studies of oxide multilayer systems: Solid oxide fuel cell cathode and electrolyte materials. Journal of Vacuum Science and Technology B, 28, C5A1–C5A5.CrossRefGoogle Scholar
  18. 18.
    Chang, I., Heo, P., & Cha, S. W. (2013). Thin film solid oxide fuel cell using a pinhole-free and dense Y-doped BaZrO3. Thin Solid Films, 534, 286–290.CrossRefGoogle Scholar
  19. 19.
    Ji, S., et al. (2015). Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate. ACS Applied Materials & Interfaces, 7, 2998–3002.CrossRefGoogle Scholar
  20. 20.
    Ding, D., Li, X., Lai, S. Y., Gerdes, K., & Liu, M. (2014). Enhancing SOFC cathode performance by surface modification through infiltration. Energy & Environmental Science, 7, 552.CrossRefGoogle Scholar
  21. 21.
    Gong, Y., et al. (2013). Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Letters, 13, 4340–4345.CrossRefGoogle Scholar
  22. 22.
    Park, K.-W., & Sung, Y.-E. (2004). Pt nanostructured electrode encapsulated by a tantalum oxide for thin-film fuel cell. Journal of Vacuum Science and Technology B, 22, 2628.CrossRefGoogle Scholar
  23. 23.
    Chang, I., Ji, S., Park, J., Lee, M. H., & Cha, S. W. (2015). Ultrathin YSZ coating on Pt cathode for high thermal stability and enhanced oxygen reduction reaction activity. Advanced Energy Materials, 5, 1402251.CrossRefGoogle Scholar
  24. 24.
    Chang, I., et al. (2013). Characterization of porous Pt films deposited via sputtering. Applied Surfance Science, 282, 463–466.CrossRefGoogle Scholar
  25. 25.
    Myung, D.-H., et al. (2011). Pulsed laser deposition of La0.6Sr0.4CoO3−δ-Ce0.9Gd0.1O2−δ nano-composite and its application to gradient-structured thin-film cathode of SOFC. Journal of the Electrochemical Society, 158, B1000.CrossRefGoogle Scholar
  26. 26.
    Lai, B. K., Johnson, A. C., Xiong, H., & Ramanathan, S. (2009). Ultra-thin nanocrystalline lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3-δ) films synthesis by RF-sputtering and temperature-dependent conductivity studies. Journal of Power Sources, 186, 115–122.CrossRefGoogle Scholar
  27. 27.
    Hong, S., et al. (2017). Enhanced thermal stability of a gadolinia-doped ceria capped Metal electrode for durable low-temperature solid oxide fuel cells. Journal of the Electrochemical Society, 164, 1301–1306.CrossRefGoogle Scholar
  28. 28.
    An, J., Kim, Y.-B., & Prinz, F. B. (2013). Ultra-thin platinum catalytic electrodes fabricated by atomic layer deposition. Physical Chemistry Chemical Physics, 15, 7520.CrossRefGoogle Scholar
  29. 29.
    Noh, H., Yoon, K. J., Kim, B. K., Je, H.-J., Lee, H.-W., Lee, J.-H., et al. (2014). Thermo-mechanical stability of multi-scale-architectured thin-film-based solid oxide fuel cells assessed by thermal cycling tests. Journal of Power Sources, 249, 125–130.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering 2019

Authors and Affiliations

  1. 1.Center for Energy ResearchUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.South China University of TechnologyGuangzhouPeople’s Republic of China
  4. 4.Department of Automotive EngineeringWonkwang UniversityIksanRepublic of Korea

Personalised recommendations