Advertisement

UV-LEDs for the Disinfection and Bio-Sensing Applications

  • Wan-Sik Won
  • Le Giang Tran
  • Woo-Tae Park
  • Kyoung-Kook Kim
  • Choongsoo S. Shin
  • Namkeun Kim
  • Young-Jin Kim
  • Yong-Jin Yoon
Review Paper
  • 73 Downloads

Abstract

UV-LEDs are used to generate ultraviolet (UV) light with high wall-plug efficiency. UV-LEDs have a unique character of generating a relatively narrow monochromatic UV wavelength band which makes them different from other conventional light sources. LEDs have lots of advantages in size, efficiency, lifetime, and low operating temperature. LEDs have been used for medical treatments but red-colored visible LEDs have been mainly used therein before the multi-color LED chip-on-board technologies become widely available. UV-LEDs now have wider range of applications in sterilization, sensing, and detection. This paper overviews currently available fabrication techniques and biomedical applications of UV-LEDs. In addition, the challenges and future developments for commercialization of UV-LEDs' bio-application are discussed.

Keywords

UV-LEDs Bio-Applications Medical treatments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gould, M. L. and Petry, V., “UV/LED-Photoinitiator and Cure Study,” PCI-Paint and Coatings Industry, pp. 36–39, 2014.Google Scholar
  2. 2.
    Yeh, N. G., Wu, C.-H., and Cheng, T. C., “Light-Emitting Diodes − Their Potential in Biomedical Applications,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 8, pp. 2161–2166, 2010.CrossRefGoogle Scholar
  3. 3.
    Gaska, R. and Zhang, J., “Deep-UV LEDS: Physics, Performance, and Applications,” Proc. of SPIE, Vol. 6037, Paper No. 603706, 2005.Google Scholar
  4. 4.
    Autin, O., Romelot, C., Rust, L., Hart, J., Jarvis, P., et al., “Evaluation of a UV-Light Emitting Diodes Unit for the Removal of Micropollutants in Water for Low Energy Advanced Oxidation Processes,” Chemosphere, Vol. 92, No. 6, pp. 745–751, 2013.CrossRefGoogle Scholar
  5. 5.
    Yole Developpement, “UV LEDs -Technology, Manufacturing and Application Trends,” https://www.slideshare.net/Yole_Developpement/yole-uv-ledtechnologymanufacturingandapplicationtrendsfebruary20 15sample (Accessed 8 OCT 2018)Google Scholar
  6. 6.
    Hirayama, H., Noguchi, N., Fujikawa, S., Norimatsu, J., Kamata, N., et al., “222-282 nm AlGaN and Inalgan Based Deep-UV LEDs Fabricated on High-Quality AlN Template,” Proc. of SPIE, Vol. 7216, Paper No. 721621, 2009.Google Scholar
  7. 7.
    Wang, Q., Savage, S., Persson, S., Noharet, B., Junique, S., et al., “Multiple Functional UV Devices Based on III-Nitride Quantum Wells for Biological Warfare Agent Detection,” Proc. of SPIE, Vol. 7216, Paper No. 721627, 2009.Google Scholar
  8. 8.
    Yoo, H. G., Park, K.-I., Koo, M., Kim, S., Lee, S. Y., et al., “Flexible GaN LED on a Polyimide Substrate for Display Applications,” Proc. of SPIE, Vol. 8268, Paper No. 82681Y, 2012.Google Scholar
  9. 9.
    Makino, T., Yoshino, K., Sakai, N., Uchida, K., Koizumi, S., et al., “Enhancement in Emission Efficiency of Diamond Deep-Ultraviolet Light Emitting Diode,” Applied Physics Letters, Vol. 99, No. 6, Paper No. 061110, 2011.Google Scholar
  10. 10.
    Shatalov, M., Bilenko, Y., Yang, J., and Gaska, R., “Deep Ultraviolet Semiconductor Light Sources for Sensing and Security,” Proc. of SPIE, Vol. 7484, pp. 74840C, 2009.CrossRefGoogle Scholar
  11. 11.
    Sang, L.-W., Qin, Z.-X., Fang, H., Zhang, Y.-Z., Li, T., et al., “AlGaN-Based Deep-Ultraviolet Light Emitting Diodes Fabricated on AlN/Sapphire Template,” Chinese Physics Letters, Vol. 26, No. 11, Paper No. 117801, 2009.Google Scholar
  12. 12.
    Shing, C., Qin, L., and Sawyer, S., “Bio-Sensing Sensitivity of a Nanoparticle Based Ultraviolet Photodetector,” International Journal of High Speed Electronics and Systems, Vol. 20, No. 3, pp. 505–513, 2011.CrossRefGoogle Scholar
  13. 13.
    Amano, H., Miyazaki, A., Iida, K., Kawashima, T., Iwaya, M., et al., “Defect and Stress Control of AlGaN for Fabrication of High Performance UV Light Emitters,” Physica Status Solidi(a), Vol. 201, No. 12, pp. 2679–2685, 2004.Google Scholar
  14. 14.
    Cao, X. A., LeBoeuf, S. F., and Stecher, T. E., “Temperature-Dependent Electroluminescence of AlGaN-Based UV LEDs,” IEEE Electron Device Letters, Vol. 27, No. 5, pp. 329–331, 2006.CrossRefGoogle Scholar
  15. 15.
    Taniyasu, Y., Kasu, M., and Makimoto, T., “An Aluminium Nitride Light-Emitting Diode with a Wavelength of 210 Nanometres,” Nature, Vol. 441, No. 7091, pp. 325–328, 2006.CrossRefGoogle Scholar
  16. 16.
    Feneberg, M., Leute, R. A., Neuschl, B., Thonke, K., and Bickermann, M., “High-Excitation and High-Resolution Photoluminescence Spectra of Bulk AlN,” Physical Review B, Vol. 82, No. 7, Paper No. 075208, 2010.Google Scholar
  17. 17.
    Khan, A., Balakrishnan, K., and Katona, T., “Ultraviolet Light-Emitting Diodes Based on Group Three Nitrides,” Nature Photonics, Vol. 2, No. 2, pp. 77–84, 2008.CrossRefGoogle Scholar
  18. 18.
    Crawford, M. H., Han, J., Shul, R., Banas, M. A., Figiel, J. J., and Zhang, L., “Design and Performance of Nitride-Based UV LEDs,” MRS Online Proceedings Library Archive, Vol. 622, T3.6.1., 2000. (DOI: 10.1557/PROC-622-T3.6.1)Google Scholar
  19. 19.
    Mori, M., Hamamoto, A., Takahashi, A., Nakano, M., Wakikawa, N., et al., “Development of A New Water Sterilization Device with a 365 Nm UV-LED,” Medical & Biological Engineering & Computing, Vol. 45, No. 12, pp. 1237–1241, 2007.CrossRefGoogle Scholar
  20. 20.
    Shur, M. S. and Gaska, R., “III-Nitride Based Deep Ultraviolet Light Sources,” Proc. of SPIE, Vol. 6894, Paper No. 689419, 2008.Google Scholar
  21. 21.
    Gaska, R., Shur, M., and Zhang, J., “Physics and Applications of Deep UV LEDs,” Proc. of 8th International Conference on Solid-State and Integrated Circuit Technology, pp. 842–844, 2006.Google Scholar
  22. 22.
    Shur, M. S. and Gaska, R., “Deep-Ultraviolet Light-Emitting Diodes,” IEEE Transactions on Electron Devices, Vol. 57, No. 1, pp. 12–25, 2010.CrossRefGoogle Scholar
  23. 23.
    Bak, J., Ladefoged, S. D., Begovic, T., and Winding, A., “UVC Fluencies for Preventative Treatment of Pseudomonas Aeruginosa Contaminated Polymer Tubes,” Biofouling, Vol. 26, No. 7, pp. 821–828, 2010.CrossRefGoogle Scholar
  24. 24.
    Li, J., Hirota, K., Yumoto, H., Matsuo, T., Miyake, Y., and Ichikawa, T., “Enhanced Germicidal Effects of Pulsed UV-LED Irradiation on Biofilms,” Journal of Applied Microbiology, Vol. 109, No. 6, pp. 2183–2190, 2010.CrossRefGoogle Scholar
  25. 25.
    Yim, C., Greco, K., Sandwell, A., and Park, S. S., “Eco-Friendly and Rapid Fabrication Method for Producing Polyethylene Terephthalate (PET) Mask Using Intensive Pulsed Light,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 4, No. 2, pp. 155–159, 2017.CrossRefGoogle Scholar
  26. 26.
    Bowker, C., Sain, A., Shatalov, M., and Ducoste, J., “Microbial UV Fluence-Response Assessment Using a Novel UV-LED Collimated Beam System,” Water Research, Vol. 45, No. 5, pp. 2011–2019, 2011.CrossRefGoogle Scholar
  27. 27.
    Würtele, M., Kolbe, T., Lipsz, M., Külberg, A., Weyers, M., et al., “Application of GaN-Based Ultraviolet-C Light Emitting Diodes − UV LEDs − for Water Disinfection,” Water Research, Vol. 45, No. 3, pp. 1481–1489, 2011.CrossRefGoogle Scholar
  28. 28.
    Oguma, K., Kita, R., Sakai, H., Murakami, M., and Takizawa, S., “Application of UV Light Emitting Diodes to Batch and Flow-Through Water Disinfection Systems,” Desalination, Vol. 328, pp. 24–30, 2013.CrossRefGoogle Scholar
  29. 29.
    Chevremont, A.-C., Farnet, A.-M., Coulomb, B., and Boudenne, J.-L., “Effect of Coupled UV-A and UV-C LEDs on Both Microbiological and Chemical Pollution of Urban Wastewaters,” Science of the Total Environment, Vol. 426, pp. 304–310, 2012.CrossRefGoogle Scholar
  30. 30.
    Cho, K., Jang, J. H., Kim, S.-P., Choi, J., Song, M. K., et al., “Analysis of Temporal Firing Patterns of Primary Afferent C-Fibers for Different Sensations in Mice,” International Journal of Precision Engineering and Manufacturing, Vol. 18, No. 5, pp. 739–745, 2017.CrossRefGoogle Scholar
  31. 31.
    Kwon, J., Park, H. W., Park, Y.-B., and Kim, N., “Potentials of Additive Manufacturing with Smart Materials for Chemical Biomarkers in Wearable Applications,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 4, No. 3, pp. 335–347, 2017.CrossRefGoogle Scholar
  32. 32.
    Son, J. M., Lee, C., Hong, S. K., Kang, J. J., and Cho, Y. H., “Fast Thermal Response of Silicon Nanowire-Heater for Heat Shock Generation,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 4, No. 1, pp. 45–52, 2017.CrossRefGoogle Scholar
  33. 33.
    Jeys, T. H., Desmarais, L., Lynch, E. J., and Ochoa, J. R., “Development of a UV-LED-Based Biosensor,” Proc. of SPIE, Vol. 5071, pp. 234–241, 2003.CrossRefGoogle Scholar
  34. 34.
    Zhang, J., Hu, X., Lunev, A., Deng, J., Bilenko, Y., et al., “Algan Deep-Ultraviolet Light-Emitting Diodes,” Japanese Journal of Applied Physics, Vol. 44, No. 10R, pp. 7250–7253, 2005.CrossRefGoogle Scholar
  35. 35.
    Davitt, K., Song, Y. K., Nurmikko, A., Jeon, S. R., Gherasimova, M., et al., “UV LED Arrays for Spectroscopic Fingerprinting of Airborne Biological Particles,” Physica Status Solidi (C), Vol. 2, No. 7, pp. 2878–2881, 2005.CrossRefGoogle Scholar
  36. 36.
    Davitt, K., Song, Y. K., Patterson, W., Nurmikko, A., Ren, Z., et al., “UV LED Arrays at 280 and 340 nm for Spectroscopic Biosensing,” Physica Status Solidi (A), Vol. 204, No. 6, pp. 2112–2116, 2007.CrossRefGoogle Scholar
  37. 37.
    Davitt, K., Song, Y.-K., Patterson III, W. R., Nurmikko, A. V., Pan, Y.-L., et al., “UV LED Arrays for Spectroscopic Sorting of Bioaerosols,” Proc. of Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Paper No. PWD4, 2006.Google Scholar
  38. 38.
    Xu, H., Zhang, J., Davitt, K., Song, Y., and Nurmikko, A., “Application of Blue-Green and Ultraviolet Micro-LEDs to Biological Imaging and Detection,” Journal of Physics D: Applied Physics, Vol. 41, No. 9, Paper No. 094013, 2008.Google Scholar
  39. 39.
    Kudo, H., Suzuki, Y., Gessei, T., Takahashi, D., Arakawa, T., and Mitsubayashi, K., “Biochemical Gas Sensor (Bio-Sniffer) for Ultrahigh-Sensitive Gaseous Formaldehyde Monitoring,” Biosensors and Bioelectronics, Vol. 26, No. 2, pp. 854–858, 2010.CrossRefGoogle Scholar
  40. 40.
    Kudo, H., Sawai, M., Suzuki, Y., Wang, X., Gessei, T., et al., “Fiber-Optic Bio-Sniffer (Biochemical Gas Sensor) for High-Selective Monitoring of Ethanol Vapor Using 335 nm UV-LED,” Sensors and Actuators B: Chemical, Vol. 147, No. 2, pp. 676–680, 2010.CrossRefGoogle Scholar
  41. 41.
    Kudo, H., Yamashita, T., Miyajima, K., Arakawa, T., and Mitsubayashi, K., “NADH-Fluorometric Biochemical Gas Sensor (Bio-Sniffer) for Evaluation of Indoor Air Quality,” IEEE Sensors Journal, Vol. 13, No. 8, pp. 2828–2833, 2013.CrossRefGoogle Scholar
  42. 42.
    Kudo, H., Sawai, M., Wang, X., Gessei, T., Koshida, T., et al., “A NADH-Dependent Fiber-Optic Biosensor for Ethanol Determination with a UV-LED Excitation System,” Sensors and Actuators B: Chemical, Vol. 141, No. 1, pp. 20–25, 2009.CrossRefGoogle Scholar
  43. 43.
    Suh, Y. D., Hong, S., Kim, G., Hwang, K.-I., Choi, J.-H., et al., “Selective Electro-Thermal Growth of Zinc Oxide Nanowire on Photolithographically Patterned Electrode for Microsensor Applications,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 3, No. 2, pp. 173–177, 2016.CrossRefGoogle Scholar
  44. 44.
    Koshida, T., Arakawa, T., Gessei, T., Takahashi, D., Kudo, H., et al., “Fluorescence Biosensing System with a UV-LED Excitation for LLeucine Detection,” Sensors and Actuators B: Chemical, Vol. 146, No. 1, pp. 177–182, 2010.CrossRefGoogle Scholar
  45. 45.
    Arakawa, T., Koshida, T., Gessei, T., Miyajima, K., Takahashi, D., et al., “Biosensor for L-Phenylalanine Based on the Optical Detection of NADH Using a UV Light Emitting Diode,” Microchimica Acta, Vol. 173, Nos. 1–2, pp. 199–205, 2011.CrossRefGoogle Scholar
  46. 46.
    Vilhunen, S., Rokhina, E. V., and Virkutyte, J., “Evaluation of UV Leds Performance in Photochemical Oxidation of Phenol in the Presence of H2O2,” Journal of Environmental Engineering, Vol. 136, No. 3, pp. 274–280, 2009.CrossRefGoogle Scholar
  47. 47.
    Gros, N., “Microdiffusion-based UV-LED Spectrometric Setup for Determining Low Levels of Ethanol in Fruit Juice,” Talanta, Vol. 87, pp. 174–179, 2011.CrossRefGoogle Scholar
  48. 48.
    Aoyagi, Y., Takeuchi, M., Yoshida, K., Kurouchi, M., Araki, T., et al., “High-Sensitivity Ozone Sensing Using 280 nm Deep Ultraviolet Light-Emitting Diode for Detection of Natural Hazard Ozone,” Journal of Environmental Protection, Vol. 3, No. 8, pp. 695–699, 2012.CrossRefGoogle Scholar
  49. 49.
    Fischer, M., Wahl, M., and Friedrichs, G., “Design and Field Application of a UV-LED Based Optical Fiber Biofilm Sensor,” Biosensors and Bioelectronics, Vol. 33, No. 1, pp. 172–178, 2012.CrossRefGoogle Scholar
  50. 50.
    Timilsina, S., Kim, J. S., Kim, J., and Kim, G.-W., “Review of Stateof-the-Art Sensor Applications Using Mechanoluminescence Microparticles,” International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 9, pp. 1237–1247, 2016.CrossRefGoogle Scholar
  51. 51.
    McDermott, S., Walsh, J., and Howard, R., “A Comparison of the Emission Characteristics of UV-LEDs and Fluorescent Lamps for Polymerisation Applications,” Optics & Laser Technology, Vol. 40, No. 3, pp. 487–493, 2008.CrossRefGoogle Scholar
  52. 52.
    Lee, J., Kim, H.-C., Choi, J.-W., and Lee, I.H., “A Review on 3D Printed Smart Devices for 4D Printing,” International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 4, No. 3, pp. 373–383, 2017.CrossRefGoogle Scholar
  53. 53.
    Žukauskas, A., Vitta, P., Kurilčik, N., Juršėnas, S., and Bakienė, E., “Characterization of Biological Materials by Frequency-Domain Fluorescence Lifetime Measurements Using Ultraviolet Light-Emitting Diodes,” Optical Materials, Vol. 30, No. 5, pp. 800–805, 2008.CrossRefGoogle Scholar
  54. 54.
    Belz, M., Klein, F. A., and Habhegger, H., “UV LED Fiber Optic Detection System for DNA and Protein,” Proc. of SPIE, Vol. 6433, Paper No. 64330H, 2007.Google Scholar
  55. 55.
    Gherasimova, M., Han, J., Song, Y.-K., Nurmikko, A., Pan, Y.-L., and Chang, R., “UV LEDs for Fluorescence Detection of Biological Particles: From Materials to Applications,” Proc. of SPIE, Vol. 6134, Paper No. 61340H, 2006.Google Scholar
  56. 56.
    Kim, H.-J., Seo, K.-J., and Kim, D.-E., “Investigation of Mechanical Behavior of Single-and Multi-Layer Graphene by Using Molecular Dynamics Simulation,” International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 12, pp. 1693–1701, 2016.CrossRefGoogle Scholar
  57. 57.
    Jin, D., Connally, R., and Piper, J., “Investigation of UV LED Luminescence Properties for Time-Resolved Fluorescence Biomedical Applications,” Proc. of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, pp. 178–179, 2005.Google Scholar
  58. 58.
    Ramesh, S., Kim, H. S., Lee, Y.-J., Hong, G.-W., Jung, D., and Kim, J.-H., “Synthesis of Cellulose-L-Tyrosine-SiO2/ZrO2 Hybrid Nanocomposites by Sol-Gel Process and Its Potential,” International Journal of Precision Engineering and Manufacturing, Vol. 18, No. 9, pp. 1297–1306, 2017.CrossRefGoogle Scholar
  59. 59.
    Crefcoeur, R.P., Yin, R., Ulm, R., and Halazonetis, T. D., “Ultraviolet-B-Mediated Induction of Protein-Protein Interactions in Mammalian Cells,” Nature Communications, Vol. 4, Article No. 1779, 2013.Google Scholar
  60. 60.
    Rovati, L. and Cattini, S., “On the Use of Deep UV-LEDs for Monitoring Dialysis,” Proc. of IEEE Instrumentation and Measurement Technology Conference pp. 956–960, 2008.Google Scholar
  61. 61.
    Hou, W.-M. and Ku, Y., “Photocatalytic Decomposition of Gaseous Isopropanol in a Tubular Optical Fiber Reactor Under Periodic UVLED Illumination,” Journal of Molecular Catalysis A: Chemical, Vol. 374, pp. 7–11, 2013.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Convergence Institute of Bioengineering and BiomaterialsSeoul National University of Science and TechnologySeoulRepublic of Korea
  3. 3.Department of Nano-Optical EngineeringKorea Polytechnic UniversityGyeonggi-doRepublic of Korea
  4. 4.Department of Mechanical EngineeringSogang UniversitySeoulRepublic of Korea
  5. 5.Department of Mechanical EngineeringIncheon National UniversityIncheonRepublic of Korea
  6. 6.Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations