Skip to main content
Log in

Design and fabrication of a 3D printed miniature pump for integrated microfluidic applications

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents design, implementation, and evaluation of a 3D printed miniature peristaltic pump based on a planetary gear structure. The miniature pump (minipump) is printed using a rigid opaque photopolymers (Vero) and the fabrication time for a single pump was in the order of few minutes. The function of the minipump is comparable to that of a benchtop peristaltic pump. It however uses gears instead of rollers to invoke peristalsis. The characterization of the minipump is performed by using deionized water and a honey solution with viscosity of about 170 cP as working fluids. The minipump has a linear flow rate range spanning from 40 mL·min-1 to 230 mL·min-1 and continues working fine even at the backpressure as high as 25 kPa. A temperature gradient microfluidic chip is fabricated as an additional testing platform for the minipump. Our experimental results demonstrate a successful interfacing between the chip and the minipump where the conceptual polymerase chain reaction (PCR) chip is established excellently without leaking or flow disruption within the microchannels. Moreover, the minipump shows good tolerance to bubbles, has a high reproducible output flow, and can operate continuously over a period of 35 hours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woias, P., “Micropumps-Past, Progress and Future Prospects,” Sensors and Actuators B: Chemical, Vol. 105, No. 1, pp. 28–38, 2005.

    Article  Google Scholar 

  2. Pham, M. and Goo, N. S., “Development of a Peristaltic Micropump with Lightweight Piezo-Composite Actuator Membrane Valves,” International Journal Aeronautical and Space Sciences, Vol. 12, No. 1, pp. 69–77, 2011.

    Article  Google Scholar 

  3. Cantwell, M. L., Amirouche, F., and Citerin, J., “Low-Cost High Performance Disposable Micropump for Fluidic Delivery Applications,” Sensors and Actuators A: Physical, Vol. 168, No. 1, pp. 187–194, 2011.

    Article  Google Scholar 

  4. Nguyen, N.-T. and Truong, T.-Q., “A Fully Polymeric Micropump with Piezoelectric Actuator,” Sensors and Actuators B: Chemical, Vol. 97, No. 1, pp. 137–143, 2004.

    Article  Google Scholar 

  5. Wu, M.-H., Wang, H.-Y., Tai, C.-L., Chang, Y.-H., Chen, Y.-M., et al., “Development of Perfusion-Based Microbioreactor Platform Capable of Providing Tunable Dynamic Compressive Loading to 3-D Cell Culture Construct: Demonstration Study of the Effect of Compressive Stimulations on Articular Chondrocyte Functions,” Sensors and Actuators B: Chemical, Vol. 176, pp. 86–96, 2013.

    Article  Google Scholar 

  6. Lee, K. S., Boccazzi, P., Sinskey, A. J., and Ram, R. J., “Microfluidic Chemostat and Turbidostat with Flow Rate, Oxygen, and Temperature Control for Dynamic Continuous Culture, Lab on a Chip, Vol. 11, No. 10, pp. 1730–1739, 2011.

    Article  Google Scholar 

  7. Wu, M.-H., Huang, S.-B., Cui, Z., Cui, Z., and Lee, G.-B., “A High Throughput Perfusion-Based Microbioreactor Platform Integrated with Pneumatic Micropumps for Three-Dimensional Cell Culture,” Biomedical Microdevices, Vol. 10, No. 2, pp. 309–319, 2008.

    Article  Google Scholar 

  8. Ni, J., Wang, B., Chang, S., and Lin, Q., “An Integrated Planar Magnetic Micropump,” Microelectronic Engineering, Vol. 117, pp. 35–40, 2014.

    Article  Google Scholar 

  9. Zhou, Y. and Amirouche, F., “An Electromagnetically-Actuated All-Pdms Valveless Micropump for Drug Delivery,” Micromachines, Vol. 2, No. 3, pp. 345–355, 2011.

    Article  Google Scholar 

  10. Chee, P. S., Arsat, R., Adam, T., Hashim, U., Rahim, R. A., and Leow, P. L., “Modular Architecture of a Non-Contact Pinch Actuation Micropump,” Sensors, Vol. 12, No. 9, pp. 12572–12587, 2012.

    Article  Google Scholar 

  11. Jeong, O. C., Park, S. W., Yang, S. S., and Pak, J. J., “Fabrication of a Peristaltic PDMS Micropump,” Sensors and Actuators A: Physical, Vols. 123-124, pp. 453–458, 2005.

    Article  Google Scholar 

  12. Becker, H. and Gärtner, C., “Polymer Microfabrication Methods for Microfluidic Analytical Applications,” Electrophoresis, Vol. 21, No. 1, pp. 12–26, 2000.

    Article  Google Scholar 

  13. Du, M., Ye, X., Wu, K., and Zhou, Z., “A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls,” Sensors, Vol. 9, No. 4, pp. 2611–2620, 2009.

    Article  Google Scholar 

  14. Koch, C., Remcho, V., and Ingle, J., “PDMS and Tubing-Based Peristaltic Micropumps with Direct Actuation,” Sensors and Actuators B: Chemical, Vol. 135, No. 2, pp. 664–670, 2009.

    Article  Google Scholar 

  15. Skafte-Pedersen, P., Sabourin, D., Dufva, M., and Snakenborg, D., “Multi-Channel Peristaltic Pump for Microfluidic Applications Featuring Monolithic PDMS Inlay,” Lab on a Chip, Vol. 9, No. 20, pp. 3003–3006, 2009.

    Article  Google Scholar 

  16. Zhang, X., Chen, Z., and Huang, Y., “A Valve-Less Microfluidic Peristaltic Pumping Method,” Biomicrofluidics, Vol. 9, No. 1, Paper No. 014118, 2015.

    Article  Google Scholar 

  17. Shen, M., Dovat, L., and Gijs, M. A., “Magnetic Active-Valve Micropump Actuated by a Rotating Magnetic Assembly,” Sensors and Actuators B: Chemical, Vol. 154, No. 1, pp. 52–58, 2011.

    Article  Google Scholar 

  18. Paydar, O. H., Paredes, C. N., Hwang, Y., Paz, J., Shah, N. B., and Candler, R. N., “Characterization of 3D-Printed Microfluidic Chip Interconnects with Integrated O-Rings,” Sensors and Actuators A: Physical, Vol. 205, pp. 199–203, 2014.

    Article  Google Scholar 

  19. Hwang, Y., Paydar, O. H., and Candler, R.N., “3D Printed Molds for Non-Planar PDMS Microfluidic Channels,” Sensors and Actuators A: Physical, Vol. 226, pp. 137–142, 2015.

    Article  Google Scholar 

  20. Shallan, A. I., Smejkal, P., Corban, M., Guijt, R. M., and Breadmore, M. C., “Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes,” Analytical Chemistry, Vol. 86, No. 6, pp. 3124–3130, 2014.

    Article  Google Scholar 

  21. Tachibana, H., Saito, M., Shibuya, S., Tsuji, K., Miyagawa, N., Yamanaka, K., and Tamiya, E., “On-Chip Quantitative Detection of Pathogen Genes by Autonomous Microfluidic PCR Platform,” Biosensors and Bioelectronics, Vol. 74, pp. 725–730, 2015.

    Article  Google Scholar 

  22. Gómez-de Pedro, S., Berenguel-Alonso, M., Couceiro, P., Alonso-Chamarro, J., and Puyol, M., “Automatic Microfluidic System to Perform Multi-Step Magneto-Biochemical Assays,” Sensors and Actuators B: Chemical, Vol. 245, pp. 477–483, 2017.

    Article  Google Scholar 

  23. Fernández-Carballo, B. L., McGuiness, I., McBeth, C., Kalashnikov, M., Borrós, S., et al., “Low-Cost, Real-Time, Continuous Flow PCR System for Pathogen Detection,” Biomedical Microdevices, Vol. 18, No. 34, 2016. (DOI: 10.1007/s10544-016-0060-4)

  24. Romoli, L., Tantussi, G., and Dini, G., “Experimental Approach to the Laser Machining of PMMA Substrates for the Fabrication of Microfluidic Devices,” Optics and Lasers in Engineering, Vol. 49, No. 3, pp. 419–427, 2011.

    Article  Google Scholar 

  25. Jiang, X., Shao, N., Jing, W., Tao, S., Liu, S., and Sui, G., “Microfluidic Chip Integrating High Throughput Continuous-Flow PCR and DNA Hybridization For Bacteria Analysis,” Talanta, Vol. 122, pp. 246–250, 2014.

    Article  Google Scholar 

  26. Erickson, D., Sinton, D., and Li, D., “Joule Heating and Heat Transfer in Poly (Dimethylsiloxane) Microfluidic Systems,” Lab on a Chip, Vol. 3, No. 3, pp. 141–149, 2003.

    Article  Google Scholar 

  27. Liao, H.-H., Liao, W., and Yang, Y., “Fabrication and Characterization of Thermo-Pneumatic Peristaltic Micropumps,” Nanotech, Vol. 3, pp. 296–299, 2008.

    Google Scholar 

  28. Shoji, E., “Fabrication of a Diaphragm Micropump System Utilizing the Ionomer-Based Polymer Actuator,” Sensors and Actuators B: Chemical, Vol. 237, pp. 660–665, 2016.

    Article  Google Scholar 

  29. Cazorla, P.-H., Fuchs, O., Cochet, M., Maubert, S., Le Rhun, G., Fouillet, Y., and Defay, E., “A Low Voltage Silicon Micro-Pump Based on Piezoelectric Thin Films,” Sensors and Actuators A: Physical, Vol. 250, pp. 35–39, 2016.

    Article  Google Scholar 

  30. Hashimoto, M., Chen, P.-C., Mitchell, M. W., Nikitopoulos, D. E., Soper, S. A., and Murphy, M. C., “Rapid Pcr in a Continuous Flow Device,” Lab on a Chip, Vol. 4, No. 6, pp. 638–645, 2004.

    Article  Google Scholar 

  31. Fuchiwaki, Y. and Nagai, H., “Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator,” Sensors, Vol. 14, No. 11, pp. 20235–20244, 2014.

    Article  Google Scholar 

  32. Ognjanovic, M., Ristic, M., and Živkovic, P., “Reliability for Design of Planetary Gear Drive Units,” Meccanica, Vol. 49, No. 4, pp. 829–841, 2014.

    Article  MATH  Google Scholar 

  33. Szita, N., Boccazzi, P., Zhang, Z., Boyle, P., Sinskey, A. J., and Jensen, K. F., “Development of a Multiplexed Microbioreactor System for High-Throughput Bioprocessing,” Lab on a Chip, Vol. 5, No. 8, pp. 819–826, 2005.

    Article  Google Scholar 

  34. Schäpper, D., Stocks, S. M., Szita, N., Lantz, A. E., and Gernaey, K. V., “Development of a Single-Use Microbioreactor for Cultivation of Microorganisms,” Chemical Engineering Journal, Vol. 160, No. 3, pp. 891–898, 2010.

    Article  Google Scholar 

  35. Alam, M. N. H. Z., Pinelo, M., Samanta, K., Jonsson, G., Meyer, A., and Gernaey, K. V., “A Continuous Membrane Microbioreactor System for Development of Integrated Pectin Modification and Separation Processes,” Chemical Engineering Journal, Vol. 167, No. 2, pp. 418–426, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhd Nazrul Hisham Zainal Alam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.N.H.Z., Hossain, F., Vale, A. et al. Design and fabrication of a 3D printed miniature pump for integrated microfluidic applications. Int. J. Precis. Eng. Manuf. 18, 1287–1296 (2017). https://doi.org/10.1007/s12541-017-0152-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-017-0152-y

Keywords

Navigation