Advertisement

Comparison of tactile and chromatic confocal measurements of aspherical lenses for form metrology

  • El-Hayek NadimEmail author
  • Nouira Hichem
  • Anwer Nabil
  • Damak Mohamed
  • Gibaru Olivier
Article

Abstract

Both contact and non-contact probes are often used in dimensional metrology applications, especially for roughness, form and surface profile measurements. To perform such kind of measurements with a nanometer level of accuracy, LNE (French National Metrology Institute (NMI)) has developed a high precision profilometer traceable to the SI meter definition. The architecture of the machine contains a short and stable metrology frame dissociated from the supporting frame. It perfectly respects Abbe principle. The metrology loop incorporates three Renishaw laser interferometers and is equipped either with a chromatic confocal probe or a tactile probe to achieve measurements at the nanometric level of uncertainty. The machine allows the in-situ calibration of the probes by means of a differential laser interferometer considered as a reference. In this paper, both the architecture and the operation of the LNE’s high precision profilometer are detailed. A brief comparison of the behavior of the chromatic confocal and tactile probes is presented. Optical and tactile scans of an aspherical surface are performed and the large number of data are processed using the L-BFGS (Limited memory-Broyden-Fletcher-Goldfarb-Shanno) algorithm. Fitting results are compared with respect to the evaluated residual errors which reflect the form defects of the surface.

Keywords

Aspherical surface Chromatic confocal probe Form metrology L-BFGS method Profilometer Tactile probe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckstette, K. F., “Trends in Asphere and Freeform Optics,” Proc. of Optonet Workshop, 2008.Google Scholar
  2. 2.
    Dumas, P R., Fleig, J., Forbes, G. W., Golini, D., Kordonski, W. I., and et al., “Flexible Polishing and Metrology Solutions for Free-Form Optics,” http://aspe.net/publications/Winter_2004/PAPERS/3METRO/1372.PDF (Accessed 16 APR 2014)
  3. 3.
    Wanders, G., “Advanced Techniques in Freeform Manufacturing,” Proc. of Optonet Workshop, 2006.Google Scholar
  4. 4.
    Karow, H. H., “Fabrication Methods for Precision Optics,” Wiley, Chap. 5, pp. 334–578, 1993.Google Scholar
  5. 5.
    Yi, A. Y., Huang, C., Klocke, F., Brecher, C., Pongs, G., and et al., “Development of a Compression Molding Process for Three-Dimensional Tailored Free-Form Glass Optics,” Applied Optics, Vol. 45, No. 25, pp. 6511–6518, 2006.CrossRefGoogle Scholar
  6. 6.
    Photonics 21, “Lighting the Way Ahead,” 2010.Google Scholar
  7. 7.
    European Association of National Metrology Institutes, “EMRP Call 2010-Industry & Environment,” http://www.euramet.org/index.php?id=emrp_call_2010#c10140.html (Accessed 16 APR 2014)
  8. 8.
    Lee, W. B., Cheung, C. F., Chiu, W. M., and Leung, T. P., “An Investigation Of Residual Form Error Compensation in the Ultra-Precision Machining of Aspheric Surfaces,” Journal of Materials Processing Technology, Vol. 99, No. 1, pp. 129–134, 2000.CrossRefGoogle Scholar
  9. 9.
    Nouira, H., Bergmans, R., Küng, A., Piree, H., Henselmans, R., and Spaan, H.A.M., “Ultra-High Precision CMMs as well as Tactile and Optical Single Scanning Probes Evaluation in Dimensional Metrology,” Proc. of CAFMET, 2014.Google Scholar
  10. 10.
    Abbé, E., “Meßapparate Für Physiker,” Zeitschrift Für Instrumentenkunde, Vol. 10, No. pp. 446–447, 1890.Google Scholar
  11. 11.
    Leach, R., “Optical Measurement of Surface Topography,” Springer, pp. 71–106, 2011.CrossRefGoogle Scholar
  12. 12.
    Whitehouse, D. J., “Surfaces and Their Measurement,” Taylor & Francis, 2002.Google Scholar
  13. 13.
    Moré, J. J., “The Levenberg-Marquardt Algorithm: Implementation and Theory,” Numerical Analysis, pp.105–116, 1978.Google Scholar
  14. 14.
    Liu, D. C. and Nocedal, J., “On the Limited Memory BFGS Method for Large Scale Optimization,” Mathematical Programming, Vol. 45, No. 1-3, pp. 503–528, 1989.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Nocedal, J., “Updating Quasi-Newton Matrices with Limited Storage,” Mathematics of Computation, Vol. 35, No. 151, pp. 773–782, 1980.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Vissiere, A., Nouira, H., Damak, M., Gibaru, O., and David, J., “A Newly Conceived Cylinder Measuring Machine and Methods that Eliminate the Spindle Errors,” Measurement Science and Technology, Vol. 23, No. 9, Paper No. 094015, 2012.Google Scholar
  17. 17.
    Vissiere, A., Nouira, H., Damak, M., Gibaru, O., and David, J., “Concept and Architecture of a New Apparatus for Cylindrical Form Measurement with a Nanometric Level of Accuracy,” Measurement Science and Technology, Vol. 23, No. 9, Paper No. 094014, 2012.Google Scholar
  18. 18.
    Zelený, V. and Stejskal, V., “The Most Recent Ways of CMM Calibration,” http://home.mit.bme.hu/~kollar/IMEKO-procfiles-for-web/congresses/WC-16th-Wien-2000/Papers/Topic%2008/Zeleny.PDF (Accessed 25 MAR 2014)
  19. 19.
    Thalmann, R., “A New High Precision Length Measuring Machine,” Proc. of 8th International Congress of Metrology, 1997.Google Scholar
  20. 20.
    Flack, D., “Good Practice Guide No. 42-CMM Verification,” National Physical Laboratory, No.2, 2011.Google Scholar
  21. 21.
    ISO 10360-6, “Geometrical Product Specifications (GPS) — Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM) — Part 6: Estimation of Errors in Computing Gaussian associated Features,” 2001.Google Scholar
  22. 22.
    JCGM, “Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement,” 2008.Google Scholar
  23. 23.
    Lee, C. O., Park, K., Park, B. C., and Lee, Y. W., “An Algorithm for Stylus Instruments to Measure Aspheric Surfaces,” Measurement Science and Technology, Vol. 16, No. 5, pp. 1215, 2005.CrossRefGoogle Scholar
  24. 24.
    Stone, J., Phillips, S. D., and Mandolfo, G. A., “Corrections for Wavelength Variations in Precision Interferometric Displacement Measurements,” Journal of Research of the National Institute of Standards and Technology, Vol. 101, pp. 671–674, 1996.CrossRefGoogle Scholar
  25. 25.
    BS EN ISO 25178-602, “Geometrical Product Specifications (GPS). Surface Texture. Areal Nominal Characteristics of Non-Contact (Confocal Chromatic Probe) Instruments,” 2010.Google Scholar
  26. 26.
    Vaissiere, D., “Métrologie tridimensionnelle des états de surface par microscopie confocale à champ étendu,” Ph.D. Thesis, Sciences et Technologeis Industrielles, University of Strasbourg, France, 2003.Google Scholar
  27. 27.
    Nouira, H., El-Hayek, N., Yuan, X., Anwer, N., and Salgado, J., “Metrological Characterization of Optical Confocal Sensors Measurements,” Proc. of 14th International Conference on Metrology and Properties of Engineering Surfaces, 2013.Google Scholar
  28. 28.
    Nouira, H., El-Hayek, N., Yuan, X., and Anwer, N., “Characterization of the Main Error Sources of Chromatic Confocal Probes for Dimensional Measurement,” Measurement Science and Technology, Vol. 25, No. 4, Paper No. 044011, 2014.Google Scholar
  29. 29.
    Fang, F., Zhang, X., Weckenmann, A., Zhang, G., and Evans, C., “Manufacturing and Measurement of Freeform Optics,” CIRP Annals-Manufacturing Technology, Vol. 62, No. 2, pp. 823–846, 2013.CrossRefGoogle Scholar
  30. 30.
    Forbes, G. W., “Shape Specification for Axially Symmetric Optical Surfaces,” Optics Express, Vol. 15, No. 8, pp. 5218–5226, 2007.CrossRefMathSciNetGoogle Scholar
  31. 31.
    ISO/DIS 10110-5, “Optics and Photonics — Preparation of Drawings for Optical Elements and Systems — Part 5: Surface Form Tolerances,” 2007.Google Scholar
  32. 32.
    Zheng, W., Bo, P., Liu, Y., and Wang, W., “Fast B-Spline Curve Fitting by L-BFGS,” Computer Aided Geometric Design, Vol. 29, No. 7, pp. 448–462, 2012.CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Ahn, S. J., “Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space,” Document ID: LNCS 3151, Springer, 2004.CrossRefzbMATHGoogle Scholar
  34. 34.
    Pomerleau, F., Colas, F., Siegwart, R., and Magnenat, S., “Comparing ICP Variants on Real-World Data Sets,” Autonomous Robots, Vol. 34, No. 3, pp. 133–148, 2013.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • El-Hayek Nadim
    • 1
    • 4
    Email author
  • Nouira Hichem
    • 1
  • Anwer Nabil
    • 2
  • Damak Mohamed
    • 3
    • 4
  • Gibaru Olivier
    • 4
  1. 1.Laboratoire Commun de Métrologie (LNE-CNAM)Laboratoire National de Métrologie et d’Essais (LNE)ParisFrance
  2. 2.Ecole Normale Supérieure de CachanUniversity Research Laboratory in Automated ProductionCachanFrance
  3. 3.GEOMNIA: 3D Metrology Engineering and Software SolutionsLilleFrance
  4. 4.Arts et Métiers ParisTechLaboratory of Information Sciences and Systems (LSIS)LilleFrance

Personalised recommendations