Deformable-wheel robot based on soft material

  • Dae-Young Lee
  • Je-Sung Koh
  • Ji-Suk Kim
  • Seung-Won Kim
  • Kyu-Jin Cho


Soft robotics, a concept contrary to conventional “hard” robotics, is a robot design methodology that uses soft materials inspired by nature. In contrast to a hard robot, a soft robot is composed of soft and flexible materials that blur the distinction between an actuator and a structure, which leads to unique characteristics that cannot be found in a conventional hard robot. This paper presents our approach to the issues that arise when the concept of soft robotics is applied to a wheeled robot. The compliance of the wheel diversifies its potential movement and allows for a high degree of adaptability to the environment. Although the wheel radius of the robot is 50 mm, it can pass through a 30 mm gap and climb a 45 mm step. While soft robotics displays properties whose performance can be challenging to implement, it also enables us to create complex forms of movement in a cheaper and simpler way. We expect that this kind of approach can provide a new design method for a deformable wheel.


Soft robotics Deformable wheel Morphing structure Shape memory alloy Smart composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trivedi, D., Rahn, C. D., Kier, W. M., and Walker, I. D., “Soft robotics: Biological inspiration, state of the art, and future research,” Applied Bionics and Biomechanics, Vol. 5, No. 3, pp. 99–117, 2008.CrossRefGoogle Scholar
  2. 2.
    Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M., and Whitesides, G. M., “Multigait soft robot,” Proceedings of the National Academy of Sciences, Vol. 108, No. 51, pp. 20400–20403, 2011.CrossRefGoogle Scholar
  3. 3.
    Seok, S., Onal, C. D., Cho, K. J., Wood, R. J., Rus, D., and Kim, S., “Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 5, pp. 1485–1497, 2013.CrossRefGoogle Scholar
  4. 4.
    Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., and Laschi, C., “Design concept and validation of a robotic arm inspired by the octopus,” Materials Science and Engineering: C, Vol. 31, No. 6, pp. 1230–1239, 2011.CrossRefGoogle Scholar
  5. 5.
    Lin, H. T., Leisk, G. G., and Trimmer, B., “GoQBot: a caterpillarinspired soft-bodied rolling robot,” Bioinspiration and Biomimetics, Vol. 6, No. 2, pp. 026007, 2011.CrossRefGoogle Scholar
  6. 6.
    Kim, S., Koh, J., Cho, M., and Cho, K., “Design & analysis a flytrap robot using bi-stable composite,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 215–220, 2011.Google Scholar
  7. 7.
    Huh, T., Park, Y. J., and Cho, K. J., “Design and analysis of a stiffness adjustable structure using an endoskeleton,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1255–1258, 2012.CrossRefGoogle Scholar
  8. 8.
    Chu, W. S., Lee, K. T., Song, S. H., Han, M. W., Lee, J. Y., Kim, H. S., Kim, M. S., Park, Y. J., Cho, K. J., and Ahn, S. H., “Review of biomimetic underwater robots using smart actuators,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1281–1292, 2012.CrossRefGoogle Scholar
  9. 9.
    Cho, K. J., Koh, J. S., Kim, S., Chu, W. S., Hong, Y., and Ahn, S. H., “Review of manufacturing processes for soft biomimetic robots,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 171–181, 2009.CrossRefGoogle Scholar
  10. 10.
    Correll, N., Onal, C. D., Liang, H., Schoenfeld, E., and Rus, D., “Soft Autonomous Materials-Using Active Elasticity and Embedded Distributed Computation,” Proc. of 12th International Symposium on Experimental Robotics, 2010.Google Scholar
  11. 11.
    Torres-Jara, E., Gilpin, K., Karges, J., Wood, R. J., and Rus, D., “Composable flexible small actuators built from thin shape memory alloy sheets,” IEEE Robotics and Automation Magazine.Google Scholar
  12. 12.
    Sugiyama, Y. and Hirai, S., “Crawling and Jumping by a Deformable Robot,” The International Journal of Robotics Research, Vol. 25, No. 5–6, pp. 603–620, 2006.CrossRefGoogle Scholar
  13. 13.
    Koh, J., Lee, D., Kim, S., and Cho, K., “Deformable soft wheel robot using hybrid actuation,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 3869–3870, 2012.Google Scholar
  14. 14.
    Trimmer, B. A., Takesian, A., Sweet, B., Rogers, C. B., Hake, D. C., and Rogers, D. J., “Caterpillar locomotion: A new model for softbodied climbing and burrowing robots,” Proc. of 7th Int. Symp. Technol. Mine Problem, pp. 1–10, 2006.Google Scholar
  15. 15.
    Menciassi, A., Accoto, D., Gorini, S., and Dario, P., “Development of a biomimetic miniature robotic crawler,” Autonomous Robots, Vol. 21, No. 2, pp. 155–163, 2006.CrossRefGoogle Scholar
  16. 16.
    Kim, S., Hawkes, E., Cho, K., Jolda, M., Foley, J., and Wood, R., “Micro artificial muscle fiber using NiTi spring for soft robotics,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2228–2234, 2009.Google Scholar
  17. 17.
    Kim, S. and Cho, K., “Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 18, No. 2, pp. 419–429, 2013.CrossRefGoogle Scholar
  18. 18.
    Noh, M., Kim, S., An, S., Koh, J., and Cho, K., “Flea-Inspired Catapult Mechanism for Miniature Jumping Robots,” IEEE Transactions on Robotics, Vol. 28, No. 5, pp. 1007–1018, 2012.CrossRefGoogle Scholar
  19. 19.
    Jung, G., Koh, J., and Cho, K., “Meso-scale compliant gripper inspired by caterpillar’s proleg,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 1831–1836, 2011.Google Scholar
  20. 20.
    Maeda, S., Abe, K., Yamamoto, K., Tohyama, O., and Ito, H., “Active endoscope with SMA (Shape Memory Alloy) coil springs,” Proceedings of IEEE the 9th Annual Ineternational Workshop on An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, pp. 290–295, 1996.Google Scholar
  21. 21.
    Cho, K. J., Hawkes, E., Quinn, C., and Wood, R. J., “Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 706–711, 2008.Google Scholar
  22. 22.
    Otsuka, K. and Wayman, C. M., “Shape Memory Materials,” Cambridge University Press, 1999.Google Scholar
  23. 23.
    Brinson, L. C., “One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable,” Journal of Intelligent Material Systems and Structures, Vol. 4, No. 2, pp. 229–242, 1993.CrossRefGoogle Scholar
  24. 24.
    Shigley, J. E., Mischke, C. R., and Budynas, R. G., “Mechanical Engineering Design,” McGraw-Hill, 2004.Google Scholar
  25. 25.
    An, S. M., Ryu, J., Cho, M., and Cho, K. J., “Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model,” Smart Materials and Structures, Vol. 21, No. 5, pp. 055009, 2012.CrossRefGoogle Scholar
  26. 26.
    Koh, J. S., Lee, D. Y., and Cho, K. J., “Design of the shape memory alloy coil spring actuator for the soft deformable wheel robot,” Proceedings of 9th International Conference on Ubiquitous Robots and Ambient Intelligence, pp. 641–642, 2012.Google Scholar
  27. 27.
    Koh, K., Lee, D., Kim, S., and Cho, K., “Design and Fabrication of Composite Sheet Spoke for Torque Transmission of Small Scale Morphing Wheel,” Proc. of KSPE Spring Conference, pp. 561–562, 2012.Google Scholar
  28. 28.
    Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E., and Fearing, R. S., “Microrobot design using fiber reinforced composites,” Journal of Mechanical Design, Vol. 130, No. 5, pp. 52–304, 2008.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Dae-Young Lee
    • 1
  • Je-Sung Koh
    • 1
  • Ji-Suk Kim
    • 1
  • Seung-Won Kim
    • 1
  • Kyu-Jin Cho
    • 1
  1. 1.School of Mechanical and Aerospace Engineering/SNU-IAMDSeoul National UniversitySeoulSouth Korea

Personalised recommendations