Development of a concept to optimize the energy efficiency in forging process chains

  • Berend Denkena
  • Hong-Seok Park
  • Bernd-Arno Behrens
  • Jan HenjesEmail author
  • Sebastian Bertys
  • Prakash Dahal
  • Ingo Lüken
  • Andreas Klassen


In the industrial production, approaches for the optimization of process chains mainly focus on criteria like quality, costs and time. Normally the energy consumption of process chains is not considered, although the variation of process parameters is an important possibility to reduce the consumption significantly. Besides that, the investigated processes are often optimized locally without considering the interaction between the different process elements of the whole process chain. Based on this background the developed concept realizes the optimization of the energy consumption of a forging process chain by adaptation of its energetic relevant parameters. Therefore, the concept defines at first variation intervals for the energetic most significant parameters of a forging process chain. After that, the resulting technical/technological modifications are evaluated energetically. To enable a holistic optimization of the process chain, the approach includes the use of a simulation model. The application of the concept has been approved with a simulation model of a 4-cylinder-crankshaft process chain. With the parameter variations “reduction of the forging temperature”, “reduction of the raw part volume” and “reduction of the forging time” three possibilities to reduce the energy consumption were identified successfully.


Energy efficiency Holistic optimization Energy consumption analysis Simulation Forging Crankshaft 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neugebauer, R., “Energy-Efficient Product and Process Innovations in Production Engineering,” CIRP Journal of Manufacturing Science and Technology, Vol. 4, No. 2, pp. 127–128, 2011.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Denkena, B., Henjes, J., and Henning, H., “Simulation-based dimensioning of manufacturing process chains,” CIRP Journal of Manufacturing Science and Technology, Vol. 4, No. 1, pp. 9–14, 2011.CrossRefGoogle Scholar
  3. 3.
    Tönshoff, H. K. and Denkena, B., “Dubbel — Taschenbuch für den Maschinenbau, Übersicht über die Fertigungsverfahren,” Springer, 2011.Google Scholar
  4. 4.
    Lee, J. Y., Kang, H. S., and Noh, S. D., “Simulation-based Analysis for Sustainability of Manufacturing System,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1221–1230, 2012.CrossRefGoogle Scholar
  5. 5.
    Denkena, B., Henjes, J., and Henning, H., “Holistic Process Chain Optimisation based on Simulation of Technological Interfaces,” 3rd International Conference on CARV, pp. 867–876, 2009.Google Scholar
  6. 6.
    Denkena, B., Behrens, B. A., Charlin, F., and Dannenberg, M., “Integrative process chain optimization using a Genetic Algorithm,” Production Engineering, Vol. 6, No. 1, pp. 29–37, 2012.CrossRefGoogle Scholar
  7. 7.
    Larek, R., Brinksmeier, E., Meyer, D., Pawletta, T., and Hagendorf, O., “A discrete-event simulation approach to predict power consumption in machining processes,” Production Engineering, Vol. 5, No. 5, pp. 575–579, 2011.CrossRefGoogle Scholar
  8. 8.
    Denkena, B., Flöter, F., and Hülsemeyer, L., “Enery-Efficient machine tools and technologies,” The 15th International Machine Tool Engineers’ Conference, Tokyo, 2nd–3rd, 2012.Google Scholar
  9. 9.
    Müller, E., Engelmann, J., Löffler, T., and Strauch, J., “Energieeffiziente Fabriken planen und betreiben,” Springer, 2009.CrossRefGoogle Scholar
  10. 10.
    ISO/EN/DIN 14040, “Environmental management, life cycle assessment, principles and framework,” 2006.Google Scholar
  11. 11.
    ISO/EN/DIN 14044, “Environmental management, life cycle assessment, requirements and guidelines,” 2006.Google Scholar
  12. 12.
    Göschel, A., Sterzing, A., and Schönherr, J., “Balancing procedure for energy and material flows in sheet metal forming,” CIRP Journal of Manufacturing Science and Technology, Vol. 4, No. 2, pp. 170–179, 2011.CrossRefGoogle Scholar
  13. 13.
    Denkena, B., Dang, X. P., Henjes, J., Lüken, I., and Park, H. S., “A study on the in-line induction heating process prior to forging in terms of saving operating energy,” International Symposium on Green Manufacturing and Applications (ISGMA), Seoul, 2011.Google Scholar
  14. 14.
    Park, H. S. and Dang, X. P., “Optimization of the In-line Induction Heating Process for Hot Forging in Terms of Saving Operating Energy,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 7, pp. 1085–1093, 2012.CrossRefGoogle Scholar
  15. 15.
    Doege, E. and Behrens, B. A., “Handbuch Umformtechnik — Grundlagen Technologien Maschinen,” Springer, 2007.Google Scholar
  16. 16.
    Böhm, V., Bruchwald, O., Reimche, W., Bach, W., Behrens, B. A., and Odening, D., “Acoustic Process Monitoring during Transient Precision Forging of High Strength Components,” Metallurgical and Mining Industry / Plastic Deformation of Metals — IX International Scientific and Technical Conference, No. 7, Vol. 3, 2011.Google Scholar
  17. 17.
    Behrens, B. A., Bouguecha, A., Lüken, I., and Klassen, A., “Numerische Auslegung der Kühlschmiermenge für Warmmassivumformprozesse,” METALL, Giesel Verlag GmbH, 2011.Google Scholar
  18. 18.
    Behrens, B. A., Frischkorn, C., and Lüken, I., “Development of an innovative monitoring system for spray fields in hot forging processes,” Production Engineering, 2012.Google Scholar
  19. 19.
    Klocke, F., Beck, T., Hoppe, S., Krieg, T., Müller, N., Nöthe, T., Raedt, H. W., and Sweeney, K., “Examples of FEM applications in manufactering technology,” Journal of Material Processing Technology, Vol. 120, No. 1-3, pp. 450–457, 2002.CrossRefGoogle Scholar
  20. 20.
    Vazquez, V. and Altan, T., “New concepts in die design — physical and computer modeling applications,” Journal oif Material Processing Technology, Vol. 98, No. 2, pp. 212–223, 2000.CrossRefGoogle Scholar
  21. 21.
    Behrens, B. A., Bach, Fr. W., Bouguecha, A., Nürnberger, F., Schaper, M., Yu, Z., and Klassen, A., “Numerische Berechnung einer intergrierten Wärmebehandlung für präzisionsgeschmiedete Bauteile,” Heat Treatment Materials, Vol. 67, pp. 337–343, 2012.Google Scholar
  22. 22.
    Jeong, D. J., Kim, D. J., Kim, J. H., Kim, B. M., and Dean, T. A., “Effects of surface teratments and lubricants for warm forging die life,” Journal of Materials Proecesing Technology, Vol. 113, No. 1-3, pp. 544–550, 2001.CrossRefGoogle Scholar
  23. 23.
    Behrens, B. A., Bouguecha, A., Hadifi, T., and Klassen, A., “Numerical and Experimental Investigations on the Service Life Estimation for Hot-Forging Dies,” Key Engineering Materials, Vol. 504-506, pp. 163–168, 2012.CrossRefGoogle Scholar
  24. 24.
    Painter, B., Shivpuri, R., and Altan, T., “Prediction of die wear during hot-extrusion of engine valves,” Journal of Materials Processing Technology, Vol. 59, No. 1-2, pp. 132–143, 1996.CrossRefGoogle Scholar
  25. 25.
    Deutsche Edelstahlwerke GmbH, “Datenblatt 1.7225/1.7227 — 42CrMo4/42CrMoS4,” Witten, 2011.Google Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Berend Denkena
    • 1
  • Hong-Seok Park
    • 2
  • Bernd-Arno Behrens
    • 3
  • Jan Henjes
    • 1
    Email author
  • Sebastian Bertys
    • 1
  • Prakash Dahal
    • 2
  • Ingo Lüken
    • 3
  • Andreas Klassen
    • 3
  1. 1.Institute of Production Engineering and Machine Tools (IFW)Leibniz University of HannoverHannoverGermany
  2. 2.Laboratory for Production Engineering, School of Mechanical and Automotive EngineeringUniversity of UlsanUlsanKorea
  3. 3.Institute of Forming Technology and Machines (IFUM)Leibniz University of HannoverHannoverGermany

Personalised recommendations