Skip to main content
Log in

Experimental study on ultrasonic use in dry creep-feed up-grinding of aluminum 7075 and Steel X210Cr12

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Ultrasonic vibration has shown capability of reducing friction forces in shearing within the material and on the contacting faces of pieces. To decrease the risk of thermal damages in creep-feed grinding, ultrasonic vibration (as a lubricant) was given to Aluminum 7075 and to Steel X210Cr12 workpieces in the direction of feed movement in dry creep-feed up-grinding while using vitrified aluminum oxide wheel. Grinding forces and surface quality are compared. It was found that under ultrasonic, without using coolant, the grinding forces were reduced and surface quality was improved. Under no ultrasonic sever thermal over-cut and burns were observed on steel, whilst there was no sign of such effects on aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, Z., Wub, Y., Wang, X., and Zhao, W., “A new twodimensional ultrasonic assisted grinding (2D-UAG) method and its fundamental performance in mono-crystal silicon machining,” Int. J. Mach. Tool Manu., Vol. 50, pp. 728–736, 2010.

    Article  Google Scholar 

  2. Furukawa, Y., Ohishi, S., and Shiozaki, S., “Selection of creep feed grinding conditions in view of work-piece burning,” Ann. CIRP, Vol. 1, pp. 213–218, 1979.

    Google Scholar 

  3. Tawakoli, T., Azarhoushang, B., and Rabiey, M., “Ultrasonic assisted dry grinding of 42CrMo4,” Int. J. Adv. Manuf. Technol., Vol. 42, No. 9–10, pp. 883–891, 2009.

    Article  Google Scholar 

  4. Alagumurthi, N., Palaniradja, K., and Soundararajan, V., “Cylindrical grinding — A review on surface integrity,” Int. J. Precis. Eng. Manuf., Vol. 8, No. 3, pp. 24–44, 2007.

    Google Scholar 

  5. Vafaeesefat, A., “Optimum Creep Feed Grinding Process Conditions for Rene 80 Supper Alloy Using Neural Network,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 3, pp. 5–11, 2009.

    Article  Google Scholar 

  6. Nevill, G. E. and Brotzen, F. R., “The effect of vibrations on the static yield strength of a low-carbon steel,” Proceeding-American Society for Testing Material, Vol. 57, pp. 751–758, 1957.

    Google Scholar 

  7. Pohlman, R. and Lehfeldt, E., “Influence of ultrasonic vibration on metallic friction,” Ultrasonics, Vol. 4, pp. 178–185, 1966.

    Article  Google Scholar 

  8. Langenecker, B., “Effects of ultrasound on deformation characteristics of metals,” IEEE Trans. Sonics. Ultrason., Vol. 13, pp. 1–8, 1966.

    Article  Google Scholar 

  9. Izumi, O., Oyama, K., and Suzuki, Y., “On the superimposing of ultrasonic vibration during compressive deformation of metals,” T. Japan Institute of Metals, Vol. 7, No. 3, pp. 158–161, 1966.

    Google Scholar 

  10. Kirchner, H. O. K., Kromp, W. K., Prinz, F. B., and Trimmel, P., “Plastic deformation under simultaneous and unidirectional loading at low and ultrasonic frequencies,” Mater. Sci. Eng., Vol. 68, pp. 197–206, 1985.

    Article  Google Scholar 

  11. Daud, Y., Lucas, M., and Huang, Z., “Modeling the effects of superimposed ultrasonic vibrations on compression and tension tests of aluminum,” J. Mat. Proc. Tech., Vol. 20, pp. 179–190, 2007.

    Article  Google Scholar 

  12. Pohlman, R. and Lehfeldt, E., “Influence of Ultrasonic Vibration on Metallic Friction,” Ultrasonics, Vol. 4, No. 4, pp. 178–185, 1966.

    Article  Google Scholar 

  13. Kumar, V. C. and Hutchings, I. M., “Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration,” Tribol. Int., Vol. 37, pp. 833–840, 2004.

    Article  Google Scholar 

  14. Babitsky, V. I., Mitrofanov, A. V., and Silberschmidt, V. V., “Ultrasonically assisted turning of aviation materials: simulations and experimental study,” Ultrasonics, Vol. 42, pp. 81–86, 2004.

    Article  Google Scholar 

  15. Azarhoushang, B. and Akbari, J., “Ultrasonic-assisted drilling of Inconel 738-LC,” Int. J. Mach. Tool Manu., Vol. 47, pp. 1027–1033, 2007.

    Article  Google Scholar 

  16. Tawakoli, T., Azarhoushang, B., and Rabiey, M., “Effects of ultrasonic vibration on grinding of 100Cr6,” Ijmms., Vol. 1, No. 4, pp. 332–342, 2008.

    Article  Google Scholar 

  17. Wu, Y., Nomura, M., Feng, Z., and Kato, M., “Modeling of Grinding Force in Constant-Depth-of-Cut Ultrasonically Assisted Grinding,” Mater. Sci. Forum., Vol. 471–472, pp. 101–106, 2004.

    Article  Google Scholar 

  18. Brehl, D. E. and Dow, T. A., “Review of vibration-assisted machining,” Precis. Eng., Vol. 32, pp. 153–172, 2008.

    Article  Google Scholar 

  19. Mult, H. C., Spur, G., and Holl, S. E., “Ultrasonic Assisted Grinding of Ceramics,” Journal of Materials Processing Technology, Vol. 62, pp. 287–293, 1996.

    Article  Google Scholar 

  20. Uhlmann, E., “Surface formation in creep feed grinding of advanced ceramics with and without ultrasonic assistance,” Ann. CIRP, Vol. 47, pp. 249–252, 1998.

    Article  Google Scholar 

  21. Zhang, H., Zhang, J., and Huo, M., “Study on ultrasonic vibration assisted grinding in theory,” Mater. Sci. Forum., Vol. 532-533, pp. 773–776, 2006.

    Article  Google Scholar 

  22. Peng, Y., Wu, Y. B., Liang, Z. Q., Guo, Y. B., and Lin, X., “An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration,” Int. J. Adv. Manu. Tech., Vol. 54, pp. 941–947, 2010.

    Article  Google Scholar 

  23. Zheng, J. X., “Research on mechanism of ultrasonic assisted creep feed grinding ceramic blade surface,” Appl. Mech. Mater., Vol. 42, pp. 166–169, 2011.

    Article  Google Scholar 

  24. Abdullah, A., Farhadi, A., and Pak, A., “Ultrasonic-assisted dry creep-feed up-grinding of superalloy Inconel738LC,” Exp. Mech., Vol. 52, No. 7, pp. 843–853, 2012.

    Article  Google Scholar 

  25. Sotoodehzadeh, M., “Friction reduction in creep-feed grinding with ultrasonic lubrication,” M.Sc. Dissertation, Amirkabir University of Technology, 2008.

  26. Abdullah, A., Shahini, M., and Pak, A., “An approach to design a high power piezoelectric ultrasonic transducer,” J. Electro. Ceram., Vol. 22, No. 4, pp. 369–382, 2009.

    Article  Google Scholar 

  27. Alloy 7075-O data sheet, www.matweb.com

  28. Alloy K100 data sheet, BOHLER, www.bohler-edelstahl.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Abdullah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullah, A., Sotoodezadeh, M., Abedini, R. et al. Experimental study on ultrasonic use in dry creep-feed up-grinding of aluminum 7075 and Steel X210Cr12. Int. J. Precis. Eng. Manuf. 14, 191–198 (2013). https://doi.org/10.1007/s12541-013-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0027-9

Keywords

Navigation