Advertisement

Effect of ligament stiffness on spinal loads and muscle forces in flexed positions

  • Kap-Soo Han
  • Antonius Rohlmann
  • Kyungsoo Kim
  • Kum Won Cho
  • Yoon Hyuk Kim
Article

Abstract

Ligaments assist muscles in stabilizing the spine within physiological ranges of motion by limiting the displacements, but the role of ligaments in spinal loads and muscle force distribution remains unknown. The purpose of this study was to investigate the effect of different stiffness on joint resultant forces and muscle forces in different flexed positions. For this study, five ligament stiffness sets were determined from the literature and applied to a musculoskeletal spine model. The dimensions of the model were adjusted according to subjects in the in vivo experiments used for validation, and spinal loads and muscle forces were determined during flexed positions. The differences between the spinal loads due to different ligament stiffnesses were insignificant (maximum difference 12%). However, the different ligament stiffnesses showed a strong effect on individual muscle forces. Among the short muscles, lumbar multifidi exerted only 65 N without ligaments but the force increased up to 254 N due to adding the maximum ligament stiffness. However, the load in the erector spinae was significantly decreased (30%). The results of this study showed that in addition to long and superficial muscles, ligaments also played an important role in stabilizing the spine in flexed positions.

Keywords

Lumbar Spine Spinal load Musculoskeletal system Ligament Muscle force Biomechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    White, A. A. and Panjabi, M. M., “Clinical Biomechanics of The Spine,” Lippincott Williams & Wilkins, 1990.Google Scholar
  2. 2.
    Schultz, A., Haderspeck-Grib, K., Sinkora, G., and Warwick, D., “Quantitative studies of the flexion-relaxation phenomenon in the back muscles,” J. Orthop. Res., Vol. 3, No. 2, pp. 189–197, 1985.CrossRefGoogle Scholar
  3. 3.
    Oxland, T. R., Panjabi, M. M., Southern, E. P., and Duranceau, J. S., “An anatomic basis for spinal instability: a porcine trauma model,” J. Orthop. Res., Vol. 9, No. 3, pp. 452–462, 1991.CrossRefGoogle Scholar
  4. 4.
    Ehara, S., Shimamura, T., Nakamura, R., and Yamazaki, K., “Paravertebral ligamentous ossification: DISH, OPLL and OLF,” Eur. J. Radiol., Vol. 27, No. 3, pp. 196–205, 1998.CrossRefGoogle Scholar
  5. 5.
    Myklebust, J. B., Pintar, F., Yoganandan, N., Cusick, J. F., Maiman, D., Myers, T. J., and Sances, A., Jr., “Tensile strength of spinal ligaments,” Spine (Phila Pa 1976), Vol. 13, No. 5, pp. 526–531, 1988.CrossRefGoogle Scholar
  6. 6.
    Nachemson, A. L. and Evans, J. H., “Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum),” J. Biomech., Vol. 1, No. 3, pp. 211–220, 1968.CrossRefGoogle Scholar
  7. 7.
    Chazal, J., Tanguy, A., Bourges, M., Gaurel, G., Escande, G., Guillot, M., and Vanneuville, G., “Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction,” J. Biomech., Vol. 18, No. 3, pp. 167–176, 1985.CrossRefGoogle Scholar
  8. 8.
    Pintar, F. A., Yoganandan, N., Myers, T., Elhagediab, A., and Sances, A., Jr., “Biomechanical properties of human lumbar spine ligaments,” J. Biomech., Vol. 25, No. 11, pp. 1351–1356, 1992.CrossRefGoogle Scholar
  9. 9.
    Nolte, L. P., Panjabi, M. M., and Oxland, T. R., “Biomechanical properties of lumbar spinal ligaments, in: Heimke, G., Soltesz, U., and Lee, A. J. C., (Eds.), Clinical Implant Materials,” Elsevier, Vol. 9, pp. 663–668, 1990.Google Scholar
  10. 10.
    Zander, T., Rohlmann, A., and Bergmann, G., “Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit,” Biomed Tech (Berl), Vol. 49, No. 1–2, pp. 27–32, 2004.CrossRefGoogle Scholar
  11. 11.
    Shirazi-Adl, A., El-Rich, M., Pop, D. G., and Parnianpour, M., “Spinal muscle forces, internal loads and stability in standing under various postures and loads—application of kinematics-based algorithm,” Eur. Spine J., Vol. 14, No. 4, pp. 381–392, 2005.CrossRefGoogle Scholar
  12. 12.
    Lee, S. H., Im, Y. J., Kim, K. T., Kim, Y. H., Park, W. M., and Kim, K., “Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis,” Spine (Phila Pa 1976), Vol. 36, No. 9, pp. 700–708, 2011.CrossRefGoogle Scholar
  13. 13.
    de Zee, M., Hansen, L., Wong, C., Rasmussen, J., and Simonsen, E. B., “A generic detailed rigid-body lumbar spine model,” J. Biomech., Vol. 40, No. 6, pp. 1219–1227, 2007.CrossRefGoogle Scholar
  14. 14.
    McGill, S. M. and Norman, R. W., “Effects of an anatomically detailed erector spinae model on L4/L5 disc compression and shear,” J. Biomech., Vol. 20, No. 6, pp. 591–600, 1987.CrossRefGoogle Scholar
  15. 15.
    Stokes, I. A. and Gardner-Morse, M., “Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness,” J. Biomech., Vol. 28, No. 2, pp. 173–186, 1995.CrossRefGoogle Scholar
  16. 16.
    Kim, K. and Kim, Y. H., “Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture,” J. Biomech. Eng., Vol. 130, No. 4, Paper No. 041005, 2008.CrossRefGoogle Scholar
  17. 17.
    Goel, V. K., Monroe, B. T., Gilbertson, L. G., and Brinckmann, P., “Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads,” Spine (Phila Pa 1976), Vol. 20, No. 6, pp. 689–698, 1995.CrossRefGoogle Scholar
  18. 18.
    Neumann, P., Keller, T. S., Ekstrom, L., Perry, L., Hansson, T. H., and Spengler, D. M., “Mechanical properties of the human lumbar anterior longitudinal ligament,” J. Biomech., Vol. 25, No. 10, pp. 1185–1194, 1992.CrossRefGoogle Scholar
  19. 19.
    Zander, T., Rohlmann, A., and Bergmann, G., “Influence of ligament stiffness on the mechanical behavior of a functional spinal unit,” J. Biomech., Vol. 37, No. 7, pp. 1107–1111, 2004.CrossRefGoogle Scholar
  20. 20.
    Han, K. S., Zander, T., Taylor, W. R., and Rohlmann, A., “An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces,” Med. Eng. Phys., Vol. 34, No. 6, pp. 709–716, 2011.CrossRefGoogle Scholar
  21. 21.
    Winter, D. A., “Biomechanics and Motor Control of Human Movement,” John Wiley & Sons, 1990.Google Scholar
  22. 22.
    Wong, K. W., Luk, K. D., Leong, J. C., Wong, S. F., and Wong, K. K., “Continuous dynamic spinal motion analysis,” Spine, Vol. 31, No. 4, pp. 414–419, 2006.CrossRefGoogle Scholar
  23. 23.
    Heuer, F., Schmidt, H., Klezl, Z., Claes, L., and Wilke, H. J., “Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle,” J. Biomech., Vol. 40, No. 2, pp. 271–280, 2007.CrossRefGoogle Scholar
  24. 24.
    Zhou, S. H., McCarthy, I. D., McGregor, A. H., Coombs, R. R., and Hughes, S. P., “Geometrical dimensions of the lower lumbar vertebrae—analysis of data from digitised CT images,” Eur. Spine J., Vol. 9, No. 3, pp. 242–248, 2000.CrossRefGoogle Scholar
  25. 25.
    Zhu, Q., Larson, C. R., Sjovold, S. G., Rosler, D. M., Keynan, O., Wilson, D. R., Cripton, P. A., and Oxland, T. R., “Biomechanical evaluation of the Total Facet Arthroplasty System: 3-dimensional kinematics,” Spine (Phila Pa 1976), Vol. 32, No. 1, pp. 55–62, 2007.CrossRefGoogle Scholar
  26. 26.
    Wilke, H., Neef, P., Hinz, B., Seidel, H., and Claes, L., “Intradiscal pressure together with anthropometric data—a data set for the validation of models,” Clin. Biomech. (Bristol, Avon), Vol. 16,Suppl. 1, pp. S111–126, 2001.CrossRefGoogle Scholar
  27. 27.
    Cholewicki, J., McGill, S. M., and Norman, R. W., “Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach,” J. Biomech., Vol. 28, No. 3, pp. 321–331, 1995.CrossRefGoogle Scholar
  28. 28.
    Rohlmann, A., Zander, T., Schmidt, H., Wilke, H. J., and Bergmann, G., “Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method,” J. Biomech., Vol. 39, No. 13, pp. 2484–2490, 2006.CrossRefGoogle Scholar
  29. 29.
    Schmidt, H., Heuer, F., Claes, L., and Wilke, H. J., “The relation between the instantaneous center of rotation and facet joint forces — A finite element analysis,” Clin. Biomech. (Bristol, Avon), Vol. 23, No. 3, pp. 270–278, 2008.CrossRefGoogle Scholar
  30. 30.
    Zander, T., Krishnakanth, P., Bergmann, G., and Rohlmann, A., “Diurnal variations in intervertebral disc height affect spine flexibility, intradiscal pressure and contact compressive forces in the facet joints,” Comput. Methods Biomech. Biomed. Engin., Vol. 13, No. 5, pp. 551–557, 2010.CrossRefGoogle Scholar
  31. 31.
    Brinckmann, P. and Grootenboer, H., “Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs,” Spine (Phila Pa 1976), Vol. 16, No. 6, pp. 641–646, 1991.CrossRefGoogle Scholar
  32. 32.
    Rasmussen, J., Damsgaard, M., and Voigt, M., “Muscle recruitment by the min/max criterion — a comparative numerical study,” J. Biomech., Vol. 34, pp. 409–415, 2001.CrossRefGoogle Scholar
  33. 33.
    Adams, M. A., McNally, D. S., and Dolan, P., “Stress distributions inside interverte-bral discs: the effects of age and degeneration,” J. Bone Joint Surg., Vol. 78, pp. 965–972, 1996.CrossRefGoogle Scholar
  34. 34.
    Marras, W. S., Davis, K. G., Ferguson, S. A., Lucas, B. R., and Gupta, P., “Spine loading characteristics of patients with low back pain compared with asymptomatic individuals,” Spine, Vol. 26, No. 23, pp. 2566–2574, 2001.CrossRefGoogle Scholar
  35. 35.
    Choi, H. W. and Kim, Y. E., “Contribution of paraspinal muscle and passive elements of the spine to the mechanical stability of the lumbar spine,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 6, pp. 993–1002, 2012.MathSciNetCrossRefGoogle Scholar
  36. 36.
    Park, S. Y., Lee, S. Y., Kang, H. C., and Kim, S. M., “EMG analysis of lower limb muscle activation pattern during pedaling: Experiments and computer simulations,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 4, pp. 601–608, 2012.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kap-Soo Han
    • 1
  • Antonius Rohlmann
    • 2
  • Kyungsoo Kim
    • 3
  • Kum Won Cho
    • 4
  • Yoon Hyuk Kim
    • 1
  1. 1.Department of Mechanical EngineeringKyung Hee UniversityYonginKorea
  2. 2.Julius Wolff InstitutCharité — UniversitätsmedizinBerlinGermany
  3. 3.Department of MathematicsKyonggi UniversitySuwonKorea
  4. 4.Korea Institute of Science and Technology Information (KISTI)DaejeonKorea

Personalised recommendations