Structural and compositional analysis of solid oxide fuel cell electrolytes using transmission electron microscopy

  • Jihwan An
  • Young Beom Kim
  • Hee Joon Jung
  • Joong Sun Park
  • Suk Won Cha
  • Turgut M. Gür
  • Fritz B. Prinz
Article

Abstract

High resolution characterization of materials for solid oxide fuel cells (SOFCs) have drawn attention in recent years due in part by advances made in instrumentation that enable in situ characterization during device operation. Transmission electron microscopy (TEM) and advanced techniques such as energy dispersive X-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS) have been widely used to characterize SOFC electrolytes, e.g. doped zirconia and doped ceria, in nanometer to atomic scale resolution. TEM and associated diffraction patterns enable the high resolution analysis of crystal structure of electrolyte at the nanoscale, while EDS and EELS are utilized to characterize their chemical composition in sub-nanometer scale. This paper reviews the use of these techniques for SOFC electrolyte characterization and presents new possibilities for SOFC materials research enabled by the introduction of recently developed technologies such as aberration-corrected or environmental TEM.

Keywords

SOFC Electrolyte TEM HREM EDS EELS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steel, B. C. H. and Heinzel, A., “Materials for fuel-cell technologies,” Nature, Vol. 414, pp. 345–352, 2001.CrossRefGoogle Scholar
  2. 2.
    Shim, J. H., Chao, C.-C., Huang, H., and Prinz, F. B., “Atomic Layer Deposition of Yttria Stabilized Zirconia for Solid Oxide Fuel Cells,” Chem. Mater., Vol. 19, pp. 3850–3854, 2007.CrossRefGoogle Scholar
  3. 3.
    Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., and Prinz, F. B., “High-Performance Ultrathin Solid Oxide Fuel Cells for Low-Temperature Operation,” J. Electrochem. Soc., Vol. 154, pp. B20–B24, 2007.CrossRefGoogle Scholar
  4. 4.
    Shim, J. H., Park, J. S., An, J., Gür, T. M., and Prinz, F. B., “Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes,” Chem. Mater., Vol. 21, No. 14, pp. 3290–3296, 2009.CrossRefGoogle Scholar
  5. 5.
    Kim, Y. B., Shim, J. H., Gür, T. M., and Prinz, F. B., “Epitaxial and Polycrystalline Gadolinia-Doped Ceria Cathode Interlayers for Low Temperature Solid Oxide Fuel Cells,” Journal of the Electrochemical Society, Vol. 158, pp. 1453–1457, 2011.CrossRefGoogle Scholar
  6. 6.
    Kim, Y. B., Holme, T. P., Gür, T. M., and Prinz, F. B., “Surface-Modified Low-Temperature Solid Oxide Fuel Cell,” Adv. Func. Mater., Vol. 21, No. 24, pp. 4684–4690, 2011.CrossRefGoogle Scholar
  7. 7.
    Fan, Z. and Prinz, F. B., “Enhancing Oxide Ion Incorporation Kinetics by Nanoscale Yttria-Doped Ceria Interlayers,” Nano Letters, Vol. 11, pp. 2202–2205, 2011.CrossRefGoogle Scholar
  8. 8.
    Aoki, M., Chiang, Y.-M., Kosacki, I., Lee, J. R., Tuller, H. L., and Liu, Y. P., “Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia,” J. Am. Ceram. Soc., Vol. 79, No. 5, pp. 1169–1180, 2096.CrossRefGoogle Scholar
  9. 9.
    Guo, X. and Maier, J., “Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis,” J. Electrochem. Soc., Vol. 148, No. 3, pp. E121–E126, 2001.CrossRefGoogle Scholar
  10. 10.
    Lee, J.-S. and Kim, D.-Y., “Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal,” J. Mater. Res., Vol. 16, No. 9, pp. 2739–2751, 2001.CrossRefGoogle Scholar
  11. 11.
    Williams, D. B. and Carter, C. B., “Transmission Electron Microscopy,” Plenum Press, pp. 553–572, 2096.Google Scholar
  12. 12.
    Shim, J. H., Park, J. S., Holme, T., Crabb, K., Lee, W., Kim, Y. B., Tian, X., Gür, T. M., and Prinz, F. B., “Enhanced oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor,” Acta Materialia, Vol. 60, pp. 1–7, 2012.CrossRefGoogle Scholar
  13. 13.
    Puurunen, R. L., “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., Vol. 97, No. 12, pp. 1–52, 2005.CrossRefGoogle Scholar
  14. 14.
    Kreuer, K. D., “Proton-conducting oxides,” Ann. Rev. Mat. Res., Vol. 33, pp. 333–359, 2003.CrossRefGoogle Scholar
  15. 15.
    Hausmann, D. M., Kim, E., Becker, J., and Gordon, R. G., “Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors,” Chem. Mater., Vol. 14, pp. 4350–4358, 2002.CrossRefGoogle Scholar
  16. 16.
    Wang, L. S. and Barnett, S. A., “Deposition, Structure, and Properties of Cermet Thin Films Composed of Ag and Y-Stabilized Zirconia,” J. Electrochem. Soc., Vol. 139, pp. 1134–1140, 2092.CrossRefGoogle Scholar
  17. 17.
    Kueper, T. W., Visco, S. J., and De Jonghe, L. C., “Thin-film ceramic electrolytes deposited on porous and non-porous substrates by sol-gel techniques,” Solid State Ionics, Vol. 52, pp. 251–259, 2092.CrossRefGoogle Scholar
  18. 18.
    Kokai, F., Amano, K., Ota, H., Ochia, Y., and Umemura, F., “XeCl laser ablative deposition and characterization of yttria-stabilized zirconia thin films on glass and CeO2-Sm2O3,” J. Appl. Phys., Vol. 72, pp. 699–704, 2092.CrossRefGoogle Scholar
  19. 19.
    Chour, K. W., Chen, J., and Xu, R., “Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications,” Thin Solid Films, Vol. 304, pp. 106–112, 2097.CrossRefGoogle Scholar
  20. 20.
    Kreuer, K. D., “Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides,” Solid State Ionics, Vol. 125, pp. 285–302, 2099.CrossRefGoogle Scholar
  21. 21.
    Ryu, K. H. and Haile, S. M., “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions,” Solid State Ionics, Vol. 125, No. 1–4, pp. 355–367, 2099.Google Scholar
  22. 22.
    Kim, Y. B., Gür, T. M., Kang, S., Jung, H.-J., Sinclair, R., Prinz, F. B., “Crater patterned 3-D proton conducting ceramic fuel cell architecture with ultra thin Y: BaZrO3 electrolyte,” Electrochemistry Communications, Vol. 13, pp. 403–406, 2011.CrossRefGoogle Scholar
  23. 23.
    Virkar, A. V., “Theoretical Analysis of Solid Oxide Fuel Cells with Two-Layer, Composite Electrolytes: Electrolyte Stability,” J. Electrochem. Soc., Vol. 138, No. 5, pp. 1481–1487, 2091.CrossRefGoogle Scholar
  24. 24.
    Eguchi, K., Setoguchi, T., Inoue, T., and Arai, H., “Electrical properties of ceria-based oxides and their application to solid oxide fuel cells,” Solid State Ionics, Vol. 52, No. 1–3, pp. 165–172, 2092.Google Scholar
  25. 25.
    Tsai, T. and Barnett, S. A., “Increased solid-oxide fuel cell power density using interfacial ceria layers,” Solid State Ionics, Vol. 98, No. 3–4, pp. 191–196, 2097.Google Scholar
  26. 26.
    Kim, Y. B., Park, J. S., Gur, T. M., and Prinz, F. B., “Oxygen activation over engineered surface grains on YDC/YSZ interlayered composite electrolyte for LT-SOFC,” Journal of Power Sources, Vol. 196, pp. 10550–10555, 2011.CrossRefGoogle Scholar
  27. 27.
    Lei, Y., Ito, Y., Browning, N. D., and Mazanec, T. J., “Segregation effects at grain boundaries in fluorite-structured ceramics,” J. Am. Ceram. Soc., Vol. 85, No. 9, pp. 2359–2363, 2002.CrossRefGoogle Scholar
  28. 28.
    Hojo, H., Mizoguchi, T., Ohta, H., Findlay, S. D., Shibata, N., Yamamoto, T., and Ikuhara, Y., “Atomic Structure of a CeO2 Grain Boundary: The Role of Oxygen Vacancies,” Nano. Lett., Vol. 10, No. 11, pp. 4668–4672, 2010.CrossRefGoogle Scholar
  29. 29.
    Lee, W., Jung, H. J., Lee, M. H., Kim, Y. B., Park, J. S., Sinclair, R., and Prinz, F. B., “Oxygen Surface Exchange at Grain Boundaries of Oxide Ion Conductors,” Adv. Funct. Mater., Vol. 22, No. 5, pp. 965–971, 2011.CrossRefGoogle Scholar
  30. 30.
    Jia, C. L., Lentzen, M., and Urban, K., “Atomic-resolution imaging of oxygen in perovskite ceramics,” Science, Vol. 299, No. 5608, pp. 870–873, 2003.CrossRefGoogle Scholar
  31. 31.
    Jia, C. L. and Urban, K., “Atomic-resolution measurement of oxygen concentration in oxide materials,” Science, Vol. 303, No. 5666, pp. 2001–2004, 2004.CrossRefGoogle Scholar
  32. 32.
    Nellist, P. D., Chisholm, M. F., Dellby, N., Krivanek, O. L., Murfitt, M. F., Szilagyi, Z. S., Lupini, A. R., Borisevich, A., Sides, W. H. Jr., and Pennycook, S. J., “Direct sub-angstrom imaging of a crystal lattice,” Science, Vol. 305, No. 5691, p. 1741, 2004.CrossRefGoogle Scholar
  33. 33.
    Muller, D. A., Fitting Kourkoutis, L., Murfitt, M., Song, J. H., Hwang, H. Y., Silcox, J., Dellby, N., and Krivanek, O. L., “Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy,” Science, Vol. 319, No. 5866, pp. 1073–1076, 2008.CrossRefGoogle Scholar
  34. 34.
    Gai, P. L. and Kourtakis, K., “Solid-state defect mechanism in vanadyl pyrophosphate catalysts: Implications for selective oxidation,” Science, Vol. 267, No. 5198, pp. 661–663, 2095.CrossRefGoogle Scholar
  35. 35.
    Boyes, E. D. and Gai, P. L., “Environmental high resolution electron microscopy and applications to chemical science,” Ultramicroscopy, Vol. 67, No. 1–4, pp. 219–232, 2097.Google Scholar
  36. 36.
    Shim, J. H., Gür, T. M., and Prinz, F. B., “Proton conduction in thin film yttrium-doped barium zirconate,” Appl. Phys. Lett., Vol. 92, No. 25, pp. 3290–3296, 2008.CrossRefGoogle Scholar
  37. 37.
    An, J., Kim, Y. B., Park, J. S., Shim, J. H., Gür, T. M., and Prinz, F. B., “Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition,” J. Vac. Sci. Technol. A, Vol. 30, p. 01A161, 2012.CrossRefGoogle Scholar
  38. 38.
    Kim, Y. B., Gür, T. M., Jung, H.-J., Kang, S., Sinclair, R., and Prinz, F. B., “Effect of crystallinity on proton conductivity in yttrium-doped barium zirconate thin films,” Solid State Ionics, Vol. 198, pp. 39–46, 2011.CrossRefGoogle Scholar
  39. 39.
    Hong, C. U., Kang, H. S., Kim, S. J., Kang, S. J., and Kim, G. B., “Transmission electron microscopy observation of a single Ni dot fabricated using scanning tunneling microscopy,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 3, pp. 469–472, 2010.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jihwan An
    • 1
  • Young Beom Kim
    • 1
  • Hee Joon Jung
    • 2
  • Joong Sun Park
    • 1
  • Suk Won Cha
    • 3
  • Turgut M. Gür
    • 2
  • Fritz B. Prinz
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Materials Science and EngineeringStanford UniversityStanfordUSA
  3. 3.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations