Ab-initio study of silicon and tin as a negative electrode materials for lithium-ion batteries

Article

Abstract

An investigation of Li-M (M: Si, Sn) components using density functional theory (DFT) is presented. Calculation of total energy, structural optimizations, bulk modulus and elastic constants with Li-Sn, Li-Si are performed through DFT calculations. From the comparable study of Li-Sn and Li-Si, it is found that silicon experience drastic mechanical degradation during lithiation than tin-based Li-Sn components. With increasing lithium net charge transfer to metals, the filling of anti-bonding orbital makes M-M covalent bonding weak ionic bonding in both Li-Si and Li-Sn. However, the difference of change of mechanical degradation during lithiation in Li-Si and Li-Sn results from the sensitivity of transition of covalent bonding. We check this from sharp decreasing of yield stress in Li-Si case. Furthermore, we simply make up amorphous Si cell with an additional Li atom at the center of the largest void to simulate the lithiation of amorphous silicon. Volume expansion of amorphous silicon cell agrees with the experiment observation and theoretical data of Li-Si compounds.

Keywords

Density functional theory Silicon anode Tin anode Mechanical properties Li-Si amorphous 

Nomenclature

E(V,e)

total energy of the system

Cijkl

elastic stiffness tensor

eij

deformation applied strain

Y

Young’s modulus

K

Bulk modulus

G

Shear modulus

v

Poisson’s ratio

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tarascon, J. M. and Armand, M., “Issues and challenges facing rechargeable lithium batteries,” Nature, Vol. 414, No. 6861, pp. 359–367, 2001.CrossRefGoogle Scholar
  2. 2.
    Park, C. M., Kim, J. H., Kim, H., and Sohn, H. J., “Li-alloy based anode materials for li secondary batteries,” Chem. Soc. Rev., Vol. 39, No. 8, pp. 3115–3141, 2010.CrossRefGoogle Scholar
  3. 3.
    Golmon, S., Maute, K., Lee, S. H., and Dunn, M. L., “Stress generation in silicon particles during lithium insertion,” Appl. Phys. Lett., Vol. 97, No. 3, Paper No. 033111, 2010.Google Scholar
  4. 4.
    Key, B., Bhattacharyya, R., Morcrette, M., Seznec, V., Tarascon, J. M., and Grey, C. P., “Real-time nmr investigations of structural changes in silicon electrodes for lithium-ion batteries,” J. Am. Chem. Soc., Vol. 131, No. 26, pp. 9239–9249, 2009.CrossRefGoogle Scholar
  5. 5.
    Chevrier, V. L., Zwanziger, J. W., and Dahn, J. R., “First principles study of li-si crystalline phases: Charge transfer, electronic structure, and lattice vibrations,” Journal of Alloys and Compounds, Vol. 496, No. 1–2, pp. 25–36, 2010.CrossRefGoogle Scholar
  6. 6.
    Stearns, L. A., Gryko, J., Diefenbacher, J., Ramachandran, G. K., and Mcmillan, P. F., “Lithium monosilicide (lisi), a lowdimensional silicon-based material prepared by high pressure synthesis: Nmr and vibrational spectroscopy and electrical properties characterization,” J. Solid State Chem., Vol. 173, No. 1, pp. 251–258, 2003.CrossRefGoogle Scholar
  7. 7.
    Limthongkul, P., Jang, Y. I., Dudney, N. J., and Chiang, Y. M., “Electrochemically-driven solid-state amorphization in lithiummetal anodes,” J. Power Sources, Vol. 119, pp. 604–609, 2003.CrossRefGoogle Scholar
  8. 8.
    Kubota, Y., Escano, M. C. S., Nakanishi, H., and Kasai, H., “Crystal and electronic structure of li15si4,” J. Appl. Phys., Vol. 102, No. 5, Paper No. 053704, 2007.Google Scholar
  9. 9.
    Obrovac, M. N. and Christensen, L., “Structural changes in silicon anodes during lithium insertion/extraction,” Electrochem. Solid St., Vol. 7, No. 5, pp. A93–A96, 2004.CrossRefGoogle Scholar
  10. 10.
    Kang, K., Lee, H. S., Han, D. W., Kim, G. S., Lee, D., Lee, G., Kang, Y. M., and Jo, M. H., “Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery,” Appl. Phys. Lett., Vol. 96, No. 5, Paper No. 053110, 2010.Google Scholar
  11. 11.
    Chan, T.-L. and Chelikowsky, J. R., “Controlling diffusion of lithium in silicon nanostructures,” Nano Letters, Vol. 10, No. 3, pp. 821–825, 2010.CrossRefGoogle Scholar
  12. 12.
    Deshpande, R., Cheng, Y. T., and Verbrugge, M. W., “Modeling diffusion-induced stress in nanowire electrode structures,” J. Power Sources, Vol. 195, No. 15, pp. 5081–5088, 2010.CrossRefGoogle Scholar
  13. 13.
    Gao, Y. F. and Zhou, M., “Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes,” J. Appl. Phys., Vol. 109, No. 1, Paper No. 014310, 2011.Google Scholar
  14. 14.
    Liu, X. H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L. Q., Liu, Y., Kushima, A., Liang, W. T., Wang, J. W., Cho, J.-H., Epstein, E., Dayeh, S. A., Picraux, S. T., Zhu, T., Li, J., Sullivan, J. P., Cumings, J., Wang, C., Mao, S., Ye, Z. Z., Zhang, S., and Huang, J. Y., “Anisotropic swelling and fracture of silicon nanowires during lithiation,” Nano Letters, Vol. 11, No. 8, pp. 3312–3318, 2011.CrossRefGoogle Scholar
  15. 15.
    Zhao, K. J., Pharr, M., Cai, S. Q., Vlassak, J. J., and Suo, Z. G., “Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge,” J. Am. Ceram. Soc., Vol. 94, No. 28712, pp. S226–S235, 2011.CrossRefGoogle Scholar
  16. 16.
    Chevrier, V. L., Zwanziger, J. W., and Dahn, J. R., “First principles studies of silicon as a negative electrode material for lithium-ion batteries,” Can. J. Phys., Vol. 87, No. 6, pp. 625–632, 2009.CrossRefGoogle Scholar
  17. 17.
    Shenoy, V. B., Johari, P., and Qi, Y., “Elastic softening of amorphous and crystalline li-si phases with increasing li concentration: A first-principles study,” J. Power Sources, Vol. 195, No. 19, pp. 6825–6830, 2010.CrossRefGoogle Scholar
  18. 18.
    Kim, H., Chou, C. Y., Ekerdt, J. G., and Hwang, G. S., “Structure and properties of li-si alloys: A first-principles study,” J. Phys. Chem. C, Vol. 115, No. 5, pp. 2514–2521, 2011.CrossRefGoogle Scholar
  19. 19.
    Winter, M. and Besenhard, J. O., “Electrochemical lithiation of tin and tin-based intermetallics and composites,” Electrochim. Acta, Vol. 45, No. 1–2, pp. 31–50, 1999.CrossRefGoogle Scholar
  20. 20.
    Sangster, J. and Bale, C. W., “The li-sn (lithium-tin) system,” J. Phase Equilib., Vol. 19, No. 1, pp. 70–75, 1998.CrossRefGoogle Scholar
  21. 21.
    Courtney, I. A., Tse, J. S., Mao, O., Hafner, J., and Dahn, J. R., “Ab initio calculation of the lithium-tin voltage profile,” Physical Review B, Vol. 58, No. 23, pp. 15583–15588, 1998.CrossRefGoogle Scholar
  22. 22.
    Stournara, M. E., Guduru, P. R., and Shenoy, V. B., “Elastic behavior of crystalline li-sn phases with increasing li concentration,” J. Power Sources, Vol. 208, pp. 165–169, 2012.CrossRefGoogle Scholar
  23. 23.
    Blochl, P. E., “Projector augmented-wave method,” Physical Review B, Vol. 50, No. 24, pp. 17953–17979, 1994.CrossRefGoogle Scholar
  24. 24.
    Kresse, G. and Furthmuller, J., “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, No. 16, pp. 11169–11186, 1996.CrossRefGoogle Scholar
  25. 25.
    Chung, D. H. and Buessem, W. R., “The Voigt-Reuss-Hill (VRH) Approximation and Elastic Moduli of Polycrystalline ZnO, TiO2 (Rutile), and α-Al2O3,” J. Appl. Phys., Vol. 39, No. 6, pp. 2777–2782, 1968.CrossRefGoogle Scholar
  26. 26.
    Wortman, J. J. and Evans, R. A., “Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium,” J. Appl. Phys., Vol. 36, No. 1, pp. 153–156, 1965.CrossRefGoogle Scholar
  27. 27.
    Kluge, M. D., Ray, J. R., and Rahman, A., “Molecular dynamic calculation of elastic-constants of silicon,” J. Chem. Phys., Vol. 85, No. 7, pp. 4028–4031, 1986.CrossRefGoogle Scholar
  28. 28.
    Kluge, M. D. and Ray, J. R., “Elastic-constants and density of states of a molecular-dynamics model of amorphous-silicon,” Physical Review B, Vol. 37, No. 8, pp. 4132–4136, 1988.CrossRefGoogle Scholar
  29. 29.
    Chou, C. Y., Kim, H., and Hwang, G. S., “A comparative firstprinciples study of the structure, energetics, and properties of lim (m = si, ge, sn) alloys,” J. Phys. Chem. C, Vol. 115, No. 40, pp. 20018–20026, 2011.CrossRefGoogle Scholar
  30. 30.
    Lee, S. S., Heo, D. E., and Lee, J. K., “Modified damage initiation criterion for the cohesive boundary element,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 4, pp. 577–581, 2010.CrossRefGoogle Scholar

Copyright information

© Korean Society for Precision Engineering and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.WCU Multiscale Mechanical Design, School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulSouth Korea
  2. 2.Department of Materials Science and Engineering and Department of PhysicsUniversity of Texas at DallasRichardsonUSA

Personalised recommendations