Advertisement

Review of manufacturing processes for soft biomimetic robots

  • Kyu-Jin Cho
  • Je-Sung Koh
  • Sangwoo Kim
  • Won-Shik Chu
  • Yongtaek Hong
  • Sung-Hoon AhnEmail author
Article

Abstract

This paper reviews various processes for manufacturing new type of robots termed “soft biomimetic robots.” Most robots are made of rigid metallic materials. But in recent years, various biomimetic robots based on soft materials and compliant parts have been developed. New manufacturing processes are required to fabricate these types of robots, and the processes include Shape Deposition Manufacturing (SDM) and Smart Composite Microstructures (SCM). Since the design of robots are limited by the available material and manufacturing processes, it is important to develop new manufacturing processes that will enable development of novel soft biomimetic robots. In this paper, various manufacturing processes which can be applied to soft robot fabrication are summarized, and features of those processes are described. Processes are divided into three categories; soft robot body fabrication, actuators for soft robots and stretchable electronics. This review provides a guideline for selecting manufacturing processes for soft robots and developing new processes that will enable new type of robots to be designed.

Keywords

Soft Robots Manufacturing Process Flexible Body Actuator Manufacturing Stretchable Electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, S., Spenko, M., Trujillo, S., Heyneman, B., Mattoli, V. and Cutkosky, M. R., “Whole body adhesion: hierarchical, directional and distributed control of adhesive forces for a climbing robot,” IEEE International Conference on Robotics and Automation, pp. 1268–1273, 2007.Google Scholar
  2. 2.
    Wood, R. J., “The first takeoff of a Biologically Inspried At-Scale Robotic Insect,” Trans. On Robotics, Vol. 24, No. 2, pp. 341–347, 2008.CrossRefGoogle Scholar
  3. 3.
    Menciassi, A., Gorini, S., Pernorio, G., Weiting, L., Valvo, F. and Dario, P., “Design, fabrication and performances of a biomimetic robotic earthworm,” IEEE International Conference on Robotics and Biomimetics, pp. 274–278, 2004.Google Scholar
  4. 4.
    Hirose, S. and Mori, M., “Biologically inspired snake-like robots,” IEEE International Conference on Robotics and Biomimetics, pp. 1–7, 2004.Google Scholar
  5. 5.
    Park, I., Kim, J., Lee, J. and Oh, J., “Mechanical design of the humanoid robot platform, HUBO,” Advanced Robotics, Vol. 21, No. 11, pp. 1305–1322, 2007.CrossRefGoogle Scholar
  6. 6.
    Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N. and Fujimura, K., “The intelligent ASIMO: System overview and integration,” IEEE/RSJ International Conference on Intelligent Robots and System, Vol. 3, pp. 2478–2483, 2002.CrossRefGoogle Scholar
  7. 7.
    Liu, J., Hu, H. and Gu, D., “A hybrid control architecture for autonomous robotic fish,” Proc. Int. Conf. Intelligent Robots and Systems, pp. 312–317, 2006.Google Scholar
  8. 8.
    Wood, R. J., Avadhanula, S., Sahai, R., Steltz, E. and Fearing, R. S., “Microrobot Design Using Fiber Reinforced Composites,” Journal of Mechanical Design, Vol. 130, No. 5, pp. 052304.1–052304.11, 2008.CrossRefGoogle Scholar
  9. 9.
    Trimmer, B. A., Takesian, A., Sweet, B., Rogers, C. B., Hake, D. C. and Rogers, D. J., “Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots,” 7th International Symposium on Technology and the Mine Problem, 2006.Google Scholar
  10. 10.
    Cham, J. G., Bailey, S. A. and Clark, J. E., “Fast and robust: Hexapedal robots via shape deposition manufacturing,” The International Journal of Robotics Research, Vol. 21, No. 10–11, pp. 869–882, 2002.CrossRefGoogle Scholar
  11. 11.
    McClung, A., Cham, J. G. and Cutkosky, M. R., “Rapid Maneuvering of a Biologically Inspired Hexapedal Robot,” Proc. of IMECE’04, IMECE2004-61150, 2004.Google Scholar
  12. 12.
    Merz, R., Prinz, F. B., Ramaswami, K., Terk, M. and Weiss, L., “Shape Deposition Manufacturing,” Proc. of the Solid Freeform Fabrication Symposium, pp. 1–8, 1994.Google Scholar
  13. 13.
    Li, X. C., Golnas, A. and Prinz, F. B., “Shape Deposition Manufacturing of smart metallic structures with embedded sensors,” Proc. of SPIE’s 7th International Symposium on Smart Structures and Materials, Vol. 3986, pp. 160–171, 2000.Google Scholar
  14. 14.
    Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. and Zhuang, L., “Sub-10 nm imprint lithography and applications,” Journal of Vacuum Science and Technology-Section B-Microelectronics Nanometer Structure, Vol. 15, No. 6, pp. 2897–2904, 1997.CrossRefGoogle Scholar
  15. 15.
    Blanchet, G. B., Loo, Y.-L., Rogers, J. A., Gao, F. and Fincher, C. R., “Large area, high resolution, dry printing of conducting polymers for organic electronics,” Appl. Phys. Lett., Vol. 82, No. 3, pp. 463–465, 2003.CrossRefGoogle Scholar
  16. 16.
    Shin, B. S., Kim, J. G., Chang, W. S. and Whang, K. H., “Rapid manufacturing of 3D micro-products using UV laser ablation and phase-change filling,” International Journal of Precision Engineering and Manufacturing, Vol. 7, No. 3, pp. 56–59, 2006.Google Scholar
  17. 17.
    Fu, G., Loh, N. H., Tor, S. B., Murakoshi, Y. and Maeda, R., “Replication of metal microstructures by micro powder injection molding,” Materials and Design, Vol. 25, No. 8, pp. 729–733, 2004.CrossRefGoogle Scholar
  18. 18.
    Dollar, A. M. and Howe, R. D., “A robust compliant grasper via shape deposition manufacturing,” IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 2, pp. 154–161, 2006.CrossRefGoogle Scholar
  19. 19.
    Kim, Y. M., Kim, M. S., Chu, W. S. and Ahn, S. H., “Manufacturing/Experiment of GFRP with embedded Nitinol wires for repetitive actuations,” SMST (Shape Memory and Superelastic Technologies), ASM International, p. 67, 2008.Google Scholar
  20. 20.
    Elkins, K., Janak, C., Nordby, H., Gray IV, R. W., Bøhn, J. H. and Baird, D. G., “Soft Elastomers for Fused Deposition Modeling,” Proc. 8th Solid Freeform Fabrication Symposium, pp. 441–448, 1997.Google Scholar
  21. 21.
    Kim, S. G., Chu, W. S., Jung, W. K. and Ahn, S. H., “Evaluation of mechanical and electrical properties of nano composite parts fabricated by nano composite deposition system (NCDS),” Journal of Material Processing Technology, Vol. 187–188, pp. 331–334, 2007.CrossRefGoogle Scholar
  22. 22.
    Chu, W. S., Kim, S. G., Jung, W. K., Kim, H. J. and Ahn, S. H., “Fabrication of micro parts using nano composite deposition system,” Rapid Prototyping Journal, Vol. 13, No. 5, pp. 276–283, 2007.CrossRefGoogle Scholar
  23. 23.
    Chu, W. S., Jeong, S. Y., Pandey, J. K., Ahn, S. H., Lee, J. H. and Chi, S. C., “Fabrication of Composite Drug Delivery System using Nano Composite Deposition System and in vivo Characterization,” International Journal of Precision Engineering and Manufacturing, Vol. 9, No. 2, pp. 81–83, 2008.Google Scholar
  24. 24.
    Khalil, S., Nam, J. and Sun, W., “Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds,” Rapid Prototyping Journal, Vol. 11, No. 1, pp. 9–17, 2005.CrossRefGoogle Scholar
  25. 25.
    Cho, K. J., Hawkes, E., Quinn, C. and Wood, R. J., “Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish,” IEEE Intl. Conf. on Robotics and Automation, pp. 706–711, 2008.Google Scholar
  26. 26.
    Leester-Schädel, M., Hoxhold, B., Lesche, S., Demming, S. and Büttgenbach, S., “Micro actuators on the basis of thin SMA foils,” Microsystem Technoligies, Vol. 14, No. 4, pp. 697–674, 2008.CrossRefGoogle Scholar
  27. 27.
    Someya, T., Kato, Y., Sekitani, T., Iba, S., Noguchi, Y., Murase, Y., Kawaguchi, H. and Sakurai, T., “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” Proceedings of the National Academy of Sciences, Vol. 102, No. 35, pp. 12321–12325, 2005.CrossRefGoogle Scholar
  28. 28.
    Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T. and Someya, T., “A Rubberlike Stretchable Active Matrix Using Elastic Conductor,” SCIENCE, Vol. 321, No. 5895, pp. 1468–1472, 2008.CrossRefGoogle Scholar
  29. 29.
    Kim, H. J., Son, C. W. and Ziaieb, B., “A multiaxial stretchable interconnect using liquid-alloy-filled elastomeric Microchannels,” Applied Physics Letter, Vol. 92, No. 1, pp. 011904.1–011904.3, 2008.Google Scholar
  30. 30.
    Lacour, S. P., Jones, J., Suo, Z. and Wagner, S., “Design and Performance of Thin Metal Film Interconnects for Skin-Like Electronic Circuits,” IEEE Electron Device Letters, Vol. 25, No. 4, pp. 179–181, 2004.CrossRefGoogle Scholar
  31. 31.
    Lacour, S. P., Jones, J., Wagner, S., Li, T. and Suo, Z., “Stretchable Interconnects for Elastic Electronic Surfaces,” Proceedings of the IEEE, Vol. 93, No. 8, pp. 1459–1467, 2005.CrossRefGoogle Scholar
  32. 32.
    Xiao, J., Carlson, A., Liu, Z. J., Huang, Y., Jiang, H. and Rogers, J. A., “Stretchable and compressible thin films of stiff materials on compliant wavy substrates,” Applied Physics Letter, Vol. 93, No. 1, pp. 013109.1–013109.3, 2008.CrossRefGoogle Scholar
  33. 33.
    Khang, D. Y., Jiang, H., Huang, Y. and Rogers, J. A., “A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates,” SCIENCE, Vol. 311, No. 5758, pp. 208–212, 2006.CrossRefGoogle Scholar
  34. 34.
    Sun, Y., Kumar, V., Adesida, I. and Rogers, J. A., “Buckled and Wavy Ribbons of GaAs for High-Performance Electronics on Elastomeric Substrates,” Advanced Material, Vol. 18, No. 21, pp. 2857–2862, 2006.CrossRefGoogle Scholar
  35. 35.
    Sun, Y., Choi, W. M., Jiang, H., Huang, Y. Y. and Rogers, J. A., “Controlled buckling of semiconductor nanoribbons for stretchable electronics,” Nature Nanotechnology, Vol. 1, No. 3, pp. 201–207, 2006.CrossRefGoogle Scholar
  36. 36.
    Sun, Y. and Rogers, J. A., “Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics,” Journal of Materials Chemistry, Vol. 17, pp. 832–840, 2007.CrossRefGoogle Scholar
  37. 37.
    Gray, D. S., Tien, J. and Chen, C. S., “High-Conductivity Elastomeric Electronics,” Advanced Material, Vol. 16, No. 5, pp. 393–397, 2004.CrossRefGoogle Scholar
  38. 38.
    Brosteaux, D., Axisa, F., Gonzalez, M. and Vanfleteren, J., “Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits,” IEEE Electron Device Letters, Vol. 28, No. 7, pp. 552–554, 2007.CrossRefGoogle Scholar
  39. 39.
    Lacour, S. P., Wagner, S., Huang, Z. and Suo, Z., “Stretchable gold conductors on elastomeric substrates,” Applied Physics Letter, Vol. 82, No. 15, pp. 2404–2406, 2003.CrossRefGoogle Scholar
  40. 40.
    Lacour, S. P., Huang, Z., Suo, Z. and Wagner, S., “Deformable interconnects for conformal integrated circuits,” Materials Research Society Symposium Proceedings, Vol. 736, pp. D4.8.1–D4.8.6, 2003.Google Scholar

Copyright information

© Korean Society for Precision Engineering and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Kyu-Jin Cho
    • 1
  • Je-Sung Koh
    • 1
  • Sangwoo Kim
    • 2
  • Won-Shik Chu
    • 1
  • Yongtaek Hong
    • 2
  • Sung-Hoon Ahn
    • 1
    Email author
  1. 1.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Electrical Engineering and Computer ScienceSeoul National UniversitySeoulKorea

Personalised recommendations