Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microstructure and Impression Creep Behavior of Al–7Si–0.3Mg Alloy with Zr Addition

  • 40 Accesses

Abstract

The effect of 0.25 wt% and 0.5 wt% Zr addition on the impression creep behavior of the cast A356 alloy was investigated. Optical and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS) were used for examination of the microstructure. The impression creep test was conducted at the temperature range of 493–553 K under the stress range of 480–680 MPa (corresponding to the normalized stresses between 0.022 and 0.03). Microstructural investigations showed that the Zr addition refined the α-Al grains and modified the eutectic structure. The Zr-containing alloys were characterized by Zr-rich intermetallics, suggesting the creep resistance of the A356 alloy was improved by Zr addition. The creep resistance of the A356–0.25Zr alloy was higher than that of the A356–0.5Zr alloy that was attributed to the morphology and the distribution of intermetallics that are rich in Zr. Results showed that the lattice self-diffusion climb-controlled creep was the dominant creep mechanism in all alloys.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    F. Paray, J. Gruzleski, Cast Met. 7, 29–40 (1994)

  2. 2.

    F. Paray, J. Gruzleski, Cast Met. 7, 153–163 (1994)

  3. 3.

    N. Tenekedjiev, J. Gruzleski, Cast Met. 3, 96–105 (1990)

  4. 4.

    S. Roy, L.F. Allard, A. Rodriguez, T.R. Watkins, A. Shyam, Metall. Mater. Trans. A 48, 2529–2542 (2017)

  5. 5.

    S. Roy, L.F. Allard, A. Rodriguez, W.D. Porter, A. Shyam, Metall. Mater. Trans. A 48, 2543–2562 (2017)

  6. 6.

    M. Javidani, D. Larouche, Int. Mater. Rev. 59, 132–158 (2014)

  7. 7.

    M. Zamani, L. Morini, L. Ceschini, S. Seifeddine, Mater. Sci. Eng. A 693, 42–50 (2017)

  8. 8.

    K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkunde 97, 246–265 (2006)

  9. 9.

    J. Rakhmonov, G. Timelli, F. Bonollo, Adv. Eng. Mater. 18, 1096–1105 (2016)

  10. 10.

    F. Wang, D. Qiu, Z.-L. Liu, J.A. Taylor, M.A. Easton, M.-X. Zhang, Acta Mater. 61, 5636–5645 (2013)

  11. 11.

    C. Xu, W. Xiao, R. Zheng, S. Hanada, H. Yamagata, C. Ma, Mater. Des. 88, 485–492 (2015)

  12. 12.

    W. Liu, W. Xiao, C. Xu, M. Liu, C. Ma, Mater. Sci. Eng. A 693, 93–100 (2017)

  13. 13.

    S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, D.L. Chen, Mater. Des. 83, 801–812 (2015)

  14. 14.

    H.A. Elhadari, H.A. Patel, D.L. Chen, W. Kasprzak, Mater. Sci. Eng. A 528, 8128–8138 (2011)

  15. 15.

    W. Kasprzak, B.S. Amirkhiz, M. Niewczas, J. Alloys Compd. 595, 67–79 (2014)

  16. 16.

    M. Colombo, E. Gariboldi, A. Morri, Mater. Sci. Eng. A 713, 151–160 (2018)

  17. 17.

    J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra, F.H. Samuel, Mater. Des. 58, 89–101 (2014)

  18. 18.

    P. Sepehrband, R. Mahmudi, F. Khomamizadeh, Scr. Mater. 52, 253–257 (2005)

  19. 19.

    R. Mahmudi, P. Sepehrband, H. Ghasemi, Mater. Lett. 60, 2606–2610 (2006)

  20. 20.

    B. Baradarani, R. Raiszadeh, Mater. Des. 32, 935–940 (2011)

  21. 21.

    T. Gao, D. Li, Z. Wei, X. Liu, Mater. Sci. Eng. A 552, 523–529 (2012)

  22. 22.

    T. Gao, Y. Zhang, X. Liu, J. Alloys Compd. 589, 25–28 (2014)

  23. 23.

    T. Gao, X. Zhu, Q. Sun, X. Liu, J. Alloys Compd. 567, 82–88 (2013)

  24. 24.

    B.A. Esgandari, B. Nami, M. Shahmiri, A. Abedi, Trans. Nonferrous Met. Soc. China 23, 2518–2523 (2013)

  25. 25.

    M. Faraji, H. Khalilpour, J. Mater. Eng. Perform. 23, 3467–3473 (2014)

  26. 26.

    P. Seensattayawong, P. Pandee, C. Limmaneevichitr, Mater. Today Proc. 5, 9440–9446 (2018)

  27. 27.

    S.M. Miresmaeili, B. Nami, R. Abbasi, I. Khoubrou, JOM 71, 2128–2135 (2019)

  28. 28.

    S.N.G. Chu, J.C.M. Li, J. Mater. Sci. 12, 2200–2208 (1977)

  29. 29.

    J.C.M. Li, Mater. Sci. Eng. A 322, 23–42 (2002)

  30. 30.

    D.H. Sastry, Mater. Sci. Eng. A 409, 67–75 (2005)

  31. 31.

    F. Yang, J.C.M. Li, Mater. Sci. Eng. R Rep. 74, 233–253 (2013)

  32. 32.

    B. Kondori, R. Mahmudi, Metall. Mater. Trans. A 40, 2007–2015 (2009)

  33. 33.

    F. Kabirian, R. Mahmudi, Metall. Mater. Trans. A 40, 2190–2201 (2009)

  34. 34.

    S.M. Miresmaeili, B. Nami, Mater. Des. (1980–2015) 56, 286–290 (2014)

  35. 35.

    K. Srinivasa Rao, P. Naga Raju, G.M. Reddy, K. Prasad Rao, Trans. Indian Inst. Met. 63, 379–384 (2010)

  36. 36.

    A. Akbari-Fakhrabadi, R. Mahmudi, A.R. Geranmayeh, M. Jamshidijam, Mater. Sci. Eng. A 535, 202–208 (2012)

  37. 37.

    M.D. Mathew, Naveena, D. Vijayanand, J. Mater. Eng. Perform. 22, 492–497 (2013)

  38. 38.

    Naveena, V.D. Vijayanand, V. Ganesan, K. Laha, M.D. Mathew, Mater. Sci. Eng. A 552, 112–118 (2012)

  39. 39.

    F. Labib, R. Mahmudi, H.M. Ghasemi, Mater. Sci. Eng. A 640, 91–97 (2015)

  40. 40.

    R. Gupta, B.S.S. Daniel, Mater. Sci. Eng. A 733, 257–266 (2018)

  41. 41.

    S. Rashno, K. Ranjbar, M. Reihanian, Mater. Res. Express 6, 0865–0866 (2019)

  42. 42.

    S. Rashno, M. Reihanian, K. Ranjbar, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00562-2

  43. 43.

    S. Nafisi, R. Ghomashchi, Mater. Charact. 57, 371–385 (2006)

  44. 44.

    Y.-C. Tsai, C.-Y. Chou, S.-L. Lee, C.-K. Lin, J.-C. Lin, S. Lim, J. Alloys Compd. 487, 157–162 (2009)

  45. 45.

    J.A. Taylor, Procedia Mater. Sci. 1, 19–33 (2012)

  46. 46.

    L. Lu, A.K. Dahle, Metall. Mater. Trans. A 36, 819–835 (2005)

  47. 47.

    T.O. Mbuya, B.O. Odera, S.P. Ng’ang’a, Int. J. Cast Met. Res. 16, 451–465 (2003)

  48. 48.

    R. Mahmudi, R. Roumina, B. Raeisinia, Mater. Sci. Eng. A 382, 15–22 (2004)

  49. 49.

    M. Keyvani, R. Mahmudi, G. Nayyeri, Metall. Mater. Trans. A 42, 1990–2003 (2011)

  50. 50.

    G. Cseh, J. Bär, H.J. Gudladt, J. Lendvai, A. Juhász, Mater. Sci. Eng. A 272, 145–151 (1999)

  51. 51.

    Z. Ma, S. Tjong, Mater. Sci. Eng. A 256, 120–128 (1998)

  52. 52.

    J. Čadek, M. Pahutova, V. Šustek, Mater. Sci. Eng. A 246, 252–264 (1998)

  53. 53.

    K.K. Chawla, M. Meyers, Mechanical Behavior of Materials (Prentice Hall, Upper Saddle River, 1999)

  54. 54.

    H.J. Frost, M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, Oxford, 1982)

  55. 55.

    R. Khorshidi, R. Mahmudi, A. Honarbakhsh-Raouf, Mater. Sci. Eng. A 668, 112–119 (2016)

  56. 56.

    J. Porter, F. Humphreys, Met. Sci. 13, 83–88 (1979)

  57. 57.

    J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, P. Schumacher, Acta Mater. 84, 153–163 (2015)

  58. 58.

    S.-Z. Lu, A. Hellawell, Metall. Trans. A 18, 1721–1733 (1987)

  59. 59.

    M. Timpel, N. Wanderka, R. Schlesiger, T. Yamamoto, N. Lazarev, D. Isheim, G. Schmitz, S. Matsumura, J. Banhart, Acta Mater. 60, 3920–3928 (2012)

  60. 60.

    C. Xu, F. Wang, H. Mudassar, C. Wang, S. Hanada, W. Xiao, C. Ma, J. Mater. Eng. Perform. 26, 1605–1613 (2017)

  61. 61.

    C.B. Fuller, D.N. Seidman, Acta Mater. 53, 5415–5428 (2005)

  62. 62.

    L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley Pub. Co., Advanced Book Program, Redwood City, 1975)

  63. 63.

    S. Zhu, J. Nie, B. Mordike, Metall. Mater. Trans. A 37, 1221–1229 (2006)

  64. 64.

    D. Srinivasan, K. Chattopadhyay, Mater. Sci. Eng. A 304–306, 534–539 (2001)

Download references

Acknowledgements

Financial support provided by Shahid Chamran University of Ahvaz (Ahvaz, Iran) through the Grant No. SCU.EM98.375 is gratefully appreciated.

Author information

Correspondence to Khalil Ranjbar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reihanian, M., Ranjbar, K. & Rashno, S. Microstructure and Impression Creep Behavior of Al–7Si–0.3Mg Alloy with Zr Addition. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00628-6

Download citation

Keywords

  • Aluminum
  • Cast alloy
  • Zr-rich intermetallic
  • Microstructure
  • Creep behavior