Advertisement

Microstructure, Mechanical Properties and Fracture Behavior of Magnesium/Steel Bimetal Using Compound Casting Assisted with Hot-Dip Aluminizing

  • Wenming JiangEmail author
  • Haixiao Jiang
  • Guangyu Li
  • Feng Guan
  • Junwen Zhu
  • Zitian FanEmail author
Article
  • 19 Downloads

Abstract

In this work, microstructure, mechanical properties and fracture behavior of the magnesium/steel bimetal using compound casting assisted with hot-dip aluminizing were investigated, and the interface bonding mechanism of the magnesium/steel bimetal were also analyzed. The results indicate that the magnesium/steel bimetal obtained without hot-dip aluminizing had larger gaps through the whole interface without reaction layers between magnesium and steel, leading to a poor mechanical bonding. After the steel substrate was hot-dip aluminized, an intermetallic layer along with an Al topcoat layer were formed on the surface of the steel substrate, and the intermetallic layer was constituted by Fe2Al5, τ10-Al9Fe4Si3, FeAl3 and τ6-Al4.5FeSi phases. In the case of the magnesium/steel bimetal obtained with hot-dip aluminizing, a compact and uniform interface layer with an average thickness of about 17 μm that consisted of Fe2Al5, τ10-Al9Fe4Si3, FeAl3 and Al12Mg17 intermetallic compounds was formed between the magnesium and the steel, obtaining a superior metallurgical bonding. The interface layer had much higher nano-hardnesses compared to the magnesium and steel matrixes, and its average nano-hardness was up to 11.1 GPa, while there were respectively 1.1 and 4.2 GPa for the magnesium and steel matrixes. The shear strength of the magnesium/steel bimetal with hot-dip aluminizing reached to 23.3 MPa, which increased by 8.59 times than that of the composites without hot-dip aluminizing. The fracture of the magnesium/steel bimetal with hot-dip aluminizing represented a brittle fracture nature, initiating from the interface layer.

Graphic Abstract

Keywords

Magnesium Steel Bimetal Aluminizing Interface Compound casting 

Notes

Acknowledgements

This work described in this paper was financially supported by the National MCF Energy R&D Program (No. 2018YFE0313300) and the National Natural Science Foundation of China (No. 51775204), and the Natural Science Foundation of Hubei Province, China (No. 2017CFB488). The authors would also like to thank the support of the Research Project of State Key Laboratory of Materials Processing and Die and Mould Technology and the Analytical and Testing Center, HUST.

References

  1. 1.
    T. Lee, M. Yamasaki, Y. Kawamura, J. Go, S.H. Park, Met. Mater. Int. 25, 372–380 (2019)CrossRefGoogle Scholar
  2. 2.
    W.J. Kim, K.H. Han, Y.J. Lee, H. Kim, E.K. Lee, Met. Mater. Int. 24, 720–729 (2018)CrossRefGoogle Scholar
  3. 3.
    W.M. Jiang, G.Y. Li, Z.T. Fan, L. Wang, F.C. Liu, Metall. Mater. Trans. A 47, 2462–2470 (2016)CrossRefGoogle Scholar
  4. 4.
    Y.J. Kim, S.-H. Kim, J.U. Lee, J.O. Choi, H.S. Kim, Y.M. Kim, Y. Kim, S.H. Park, Mater. Sci. Eng. A 708, 405–410 (2017)CrossRefGoogle Scholar
  5. 5.
    Z.S. Yao, G. Xu, Z.Y. Jiang, J.Y. Tian, Q. Yuan, H.W. Ma, Met. Mater. Int. 25, 1151–1160 (2019)CrossRefGoogle Scholar
  6. 6.
    J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Met. Mater. Int. 25, 1161–1169 (2019)CrossRefGoogle Scholar
  7. 7.
    W.M. Jiang, G.Y. Li, Y. Wu, X.W. Liu, Z.T. Fan, J. Mater. Process. Technol. 258, 239–250 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Cheng, J.H. Zhao, J.Y. Zhang, Y. Guo, K. He, J.J. Shangguan, F.L. Wen, Materials 12, 1–14 (2019)Google Scholar
  9. 9.
    V.K. Patel, S.D. Bhole, D.L. Chen, Mater. Des. 45, 236–240 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Liu, X. Qi, Z. Wu, Mater. Lett. 64, 89–92 (2010)CrossRefGoogle Scholar
  11. 11.
    A.M. Nasiri, P. Chartrand, D.C. Weckman, N.Y. Zhou, Metall. Mater. Trans. A 44, 1937–1946 (2013)CrossRefGoogle Scholar
  12. 12.
    G. Song, J.W. Yu, T.T. Li, J.F. Wang, L.M. Liu, J. Manuf. Process. 31, 131–138 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Jana, Y. Hovanski, G.J. Grant, Metall. Mater. Trans. A 41, 3173–3182 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.N. Wei, J.L. Li, J.T. Xiong, F. Huang, F.S. Zhang, Mater. Des. 33, 111–114 (2012)CrossRefGoogle Scholar
  15. 15.
    L.Q. Li, C.W. Tan, Y.B. Chen, W. Guo, C.X. Mei, J. Mater. Process. Technol. 213, 361–375 (2013)CrossRefGoogle Scholar
  16. 16.
    L. Li, C. Tan, Y. Chen, W. Guo, C. Mei, X. Hu, Metall. Mater. Trans. A 43, 4740–4754 (2012)CrossRefGoogle Scholar
  17. 17.
    W.M. Elthalabawy, T.I. Khan, Mater. Charact. 61, 703–712 (2010)CrossRefGoogle Scholar
  18. 18.
    W. Elthalabawy, T. Khan, J. Mater. Sci. Technol. 27, 22–28 (2011)CrossRefGoogle Scholar
  19. 19.
    L. Liu, L. Xiao, D.L. Chen, J.C. Feng, S. Kim, Y. Zhou, Mater. Des. 45, 336–342 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Feng, Y. Li, Z. Luo, Z. Ling, Z. Wang, J. Mater. Process. Technol. 236, 114–122 (2016)CrossRefGoogle Scholar
  21. 21.
    V.K. Patel, S.D. Bhole, D.L. Chen, J. Mater. Process. Technol. 214, 811–817 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Shakil, N.H. Tariq, M. Ahmad, M.A. Choudhary, J.I. Akhter, S.S. Babu, Mater. Des. 55, 263–273 (2014)CrossRefGoogle Scholar
  23. 23.
    C.W. Tan, B. Chen, X.G. Song, L. Zhou, S.H. Meng, L.Q. Li, J.C. Feng, Weld. J. 95, 384–394 (2016)Google Scholar
  24. 24.
    M. Ding, S.S. Liu, Y. Zheng, Y.C. Wang, H. Li, W.Q. Xing, X.Y. Yu, P. Dong, Mater. Des. 88, 375–383 (2015)CrossRefGoogle Scholar
  25. 25.
    R. Cao, H.X. Zhu, Q. Wang, C. Dong, Q. Lin, J.H. Chen, Mater. Sci. Technol. 32, 1805–1817 (2016)CrossRefGoogle Scholar
  26. 26.
    A.M. Nasiri, M.Y. Lee, D.C. Weckman, Y. Zhou, Metall. Mater. Trans. A 455, 749–5766 (2014)Google Scholar
  27. 27.
    Y.G. Miao, D.F. Han, X.F. Xu, B.T. Wu, Mater. Charact. 93, 87–93 (2014)CrossRefGoogle Scholar
  28. 28.
    Y.C. Chen, K. Nakata, Mater. Des. 30, 3913–3919 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Sacerdote-Peronnet, E. Guiot, F. Bosselet, O. Dezellus, D. Rouby, J.C. Viala, Mater. Sci. Eng., A 445–446, 296–301 (2007)CrossRefGoogle Scholar
  30. 30.
    W.M. Jiang, Z.T. Fan, G.Y. Li, C. Li, J. Alloys Compd. 678, 249–257 (2016)CrossRefGoogle Scholar
  31. 31.
    U.R. Kattner, T.B. Massalski, Binary alloy phase diagrams (ASM International, Material Park, 1990)Google Scholar
  32. 32.
    W.M. Jiang, Z.T. Fan, C. Li, J. Mater. Process. Technol. 226, 25–31 (2015)CrossRefGoogle Scholar
  33. 33.
    N. Krendelsberger, F. Weitzer, J.C. Schuster, Metall. Mater. Trans. A 38, 1681–1691 (2007)CrossRefGoogle Scholar
  34. 34.
    Y. Lia, P. Ochin, A. Quivy, P. Telolahy, B. Legendre, J. Alloys Compd. 298, 198–202 (2000)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, Y.Q. Chen, A.A. Luo, Scr. Mater. 86, 52–55 (2014)CrossRefGoogle Scholar
  36. 36.
    J.C. Liu, J. Hu, X.Y. Nie, H.X. Li, Q. Du, J.S. Zhang, L.Z. Zhuang, Mater. Sci. Eng., A 635, 70–76 (2015)CrossRefGoogle Scholar
  37. 37.
    W.M. Jiang, Z.T. Fan, G.Y. Li, L. Yang, X.W. Liu, Metall. Mater. Trans. A 47, 6487–6497 (2016)CrossRefGoogle Scholar
  38. 38.
    O. Dezellus, M. Zhe, F. Bosselet, D. Rouby, J.C. Viala, Mater. Sci. Eng., A 528, 2795–2803 (2011)CrossRefGoogle Scholar
  39. 39.
    Z.L. Jiang, Z.T. Fan, W.M. Jiang, G.Y. Li, Y. Wu, F. Guan, H.X. Jiang, J. Mater. Process. Technol. 261, 149–158 (2018)CrossRefGoogle Scholar
  40. 40.
    G.Y. Li, W.M. Jiang, W.C. Yang, Z.L. Jiang, F. Guan, H.X. Jiang, Z.T. Fan, Metall. Mater. Trans. A 50, 1076–1090 (2019)CrossRefGoogle Scholar
  41. 41.
    D.X. Ren, L.M. Liu, Mater. Des. 59, 369–376 (2014)CrossRefGoogle Scholar
  42. 42.
    R.W. Richards, R.D. Jones, P.D. Clements, H. Clarke, Int. Mater. Rev. 39, 191–212 (1994)CrossRefGoogle Scholar
  43. 43.
    H. Ma, G.L. Qin, L.Y. Wang, X.M. Meng, L. Chen, Mater. Des. 90, 330–339 (2016)CrossRefGoogle Scholar
  44. 44.
    W.M. Jiang, Z.T. Fan, G.Y. Li, X.W. Liu, F.C. Liu, J. Alloys Compd. 688, 742–751 (2016)CrossRefGoogle Scholar
  45. 45.
    S. Basak, H. Das, T.K. Pal, M. Shome, Mater. Charact. 112, 229–237 (2016)CrossRefGoogle Scholar
  46. 46.
    Y. Du, J.C. Schuster, Z.K. Liu, R.X. Hu, P. Nash, W.H. Sun, W.W. Zhang, J. Wang, L.J. Zhang, C.Y. Tang, Z.J. Zhu, S.H. Liu, Y.F. Ouyang, W.Q. Zhang, N. Krendelsberger, Intermetallics 16, 554–570 (2008)CrossRefGoogle Scholar
  47. 47.
    H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, G. Eggeler, Acta Mater. 59, 1586–1600 (2011)CrossRefGoogle Scholar
  48. 48.
    V. Raghavan, J. Phase Equilib. Diffus. 30, 184–188 (2009)CrossRefGoogle Scholar
  49. 49.
    A. Bouayad, Ch. Gerometta, A. Belkebir, A. Ambari, Mater. Sci. Eng., A 363, 53–61 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2020

Authors and Affiliations

  1. 1.State Key Lab of Materials Processing and Die and Mould TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations