Advertisement

Characterization of Ti–Al Intermetallic Synthesized by Mechanical Alloying Process

  • 33 Accesses

Abstract

Mechanical alloying (MA) of Al60Ti40 (wt%) has been successfully done by using a planetary ball mill having mixed balls of 5 mm and 15 mm diameter to refine the crystallite size of the elemental powder and to get the new MAed phase of AlTi. The microstructural and morphological analysis of elemental as well as the processed powder was done with help of Scanning Electron Microscope and X-Ray diffraction technique. Mechanical alloying of elemental Al and Ti resulted in the formation of AlTi phases with the reflection of α-Ti3Al and TiAl3. The average particle size was reduced around 7 times after 60 h of milling. The mean crystallite size of MAed powder was also reduced up to 85 nm after 60 h of mechanical alloying under controlled conditions.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    C. Cui, B.M. Hu, L. Zhao, S. Liu, Titanium alloy production technology, market prospects and industry development. Mater. Des. 32(3), 1684–1691 (2011)

  2. 2.

    F. Yang, S. Raynova, A. Singh, Q. Zhao, C. Romero, L. Bolzoni, Producing high-quality titanium alloy by a cost-effective route combining fast heating and hot processing. JOM 70(5), 1–6 (2018)

  3. 3.

    R.M. German, Progress in titanium metal powder injection molding. Materials (Basel) 6(8), 3641–3662 (2013)

  4. 4.

    W.J. Zhang, B.V. Reddy, S.C. Deevi, Physical properties of TiAl-base alloys. Scr. Mater. 45(6), 645–651 (2001)

  5. 5.

    M.A. Atwater, L.N. Guevara, S.J. Knauss, Multifunctional porous catalyst produced by mechanical alloying. Mater. Res. Lett. 7(4), 131–136 (2019)

  6. 6.

    H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater. Sci. Eng. C 26(8), 1269–1277 (2006)

  7. 7.

    S.-C. Ur, I.-H. Kim, Thermoelectric properties of mechanically alloyed iron disilicides consolidated by various processes. Met. Mater. Int. 11(4), 301–308 (2005)

  8. 8.

    C.-H. Lee, Y.-S. Kwon, Effect of mechanical alloying on the formation of Sm2Fe17Nx compound. Met. Mater. Int. 8(2), 151–154 (2002)

  9. 9.

    M.K. Yadav, Fabrication of promising material ‘titanium aluminide’: methods and issues (a status report). Mater. Res. Express 5(11), 1–17 (2018)

  10. 10.

    D.C. Jia, X.L. Li, Y. Zhou, H.Q. Han, Effect of SiC particulate sizes on the mechanical properties of Al-6Ti-6Nb matrix composites prepared by a mechanical alloying technique. J. Mater. Sci. Lett. 18(24), 2029–2032 (1999)

  11. 11.

    Q. Yao, J. Sun, Y. Zhu, H. Zhang, W. Tong, TiO2 coating prepared by mechanical alloying treatment for photocatalytic degradation. Surf. Eng. 35(11), 927–932 (2019). https://doi.org/10.1080/02670844.2018.1554738

  12. 12.

    C. Suryanarayana, E. Ivanov, V.V. Boldyrev, The science and technology of mechanical alloying. Mater. Sci. Eng. A 304–306(1–2), 151–158 (2001)

  13. 13.

    C. Suryanarayana, N. Al-Aqeeli, Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58(FEBRUARY), 338–502 (2013)

  14. 14.

    Y. Liu, W. Liu, Mechanical alloying and spark plasma sintering of the intermetallic compound Ti50Al50. J. Alloys Compd. 440(1–2), 154–157 (2007)

  15. 15.

    J.S. Benjamin, Mechanical alloying—a perspective. Met. Powder Rep. 45(2), 122–127 (1990)

  16. 16.

    R.B. Schwarz, S. Srinivasan, P.B. Desch, Synthesis of metastable aluminum-based intermetallics by mechanical alloying. Mater. Sci. Forum 88–90, 595–602 (1992)

  17. 17.

    S. Çam, V. Demir, D. Özyürek, Wear behaviour of A356/TiAl3 in situ composites produced by mechanical alloying. Metals (Basel) 6(2), 34 (2016)

  18. 18.

    N.G. Razumov, A.A. Popovich, Q. Wang, Thermal plasma spheroidization of high-nitrogen stainless steel powder alloys synthesized by mechanical alloying. Met. Mater. Int. 24(2), 363–370 (2018)

  19. 19.

    J.M. Byun, C.W. Park, Y. Do Kim, Experimental verification of the decomposition of Y2O3 in Fe-based ODS alloys during mechanical alloying process. Met. Mater. Int. 24(6), 1309–1314 (2018)

  20. 20.

    M. Zadra, Mechanical alloying of titanium. Mater. Sci. Eng. A 583, 105–113 (2013)

  21. 21.

    L. Dias, B. Trindade, C. Coelho, S. Patankar, C. Draney, F.H. Sam Froes, Ti-Mg-Si alloys produced by non-equilibrium processing methods: mechanical alloying and sputtering. Mater. Sci. Eng. A 364(1–2), 273–280 (2004)

  22. 22.

    M. Wang, H.N. Han, H.-S. Chung, Y.-B. Chun, J. Jang, Microstructural evolution of oxide and nitride dispersed nickel-based alloy powders. Met. Mater. Int. 25(1), 140–146 (2019)

  23. 23.

    H.S. Jang, C.J. Van Tyne, W.H. Lee, Rapid consolidation mechanism of titanium aluminide solid compact via electric discharging through elemental Ti and Al powder mixture. Met. Mater. Int. 25(4), 991–999 (2019)

  24. 24.

    Z.Y. Ma, S.R. Sharma, R.S. Mishra, Effect of friction stir processing on the microstructure of cast A356 aluminum. Mater. Sci. Eng. A 433(1–2), 269–278 (2006)

  25. 25.

    S. Seshan, J. Kaneko, Advanced materials through mechanical alloying-a retrospective review. Adv. Compos. Mater 2(2), 153–170 (1992)

  26. 26.

    S. Alamolhoda, S. Heshmati-Manesh, A. Ataie, A. Badiei, Role of process control agents on milling behavior of Al and TiO2 powder mixture to synthesize TiAl/Al2O3 nano composite. Int. J. Mod. Phys. Conf. Ser. 05(01), 638–645 (2012)

  27. 27.

    M. Abd Elhamid, M.M. Emara, H.G. Salem, Influence of mixing technique on the mechanical properties and structural evolution of Al-NiAl Composites. J. Mater. Eng. Perform. 23(10), 3425–3435 (2014)

  28. 28.

    M. Zadra, Facile mechanical alloying of titanium sponge. Mater. Sci. Eng. A 590, 281–288 (2014)

  29. 29.

    E. Baril, L.-P. Lefebvre, Y. Thomas, Interstitial elements in titanium powder metallurgy: sources and control. Powder Metall. 54(3), 183–186 (2011)

  30. 30.

    B.S. Murty, S. Ranganathan, Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43(3), 101–141 (1998)

  31. 31.

    M.H. Enayati, F.A. Mohamed, Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev. 59(7), 394–416 (2014)

  32. 32.

    S.R.B.S. Murty, Novel materials synthesis by mechanical alloying/milling. Int. Mater. 43(3), 101–141 (1998)

  33. 33.

    S.N.A. Muttalib, N. Othman, Effect of ball milling parameters on properties of attapulgite filled natural rubber composite. Proc. Chem. 19, 381–387 (2016)

  34. 34.

    H. Ghayour, M. Abdellahi, M. Bahmanpour, Optimization of the high energy ball-milling: modeling and parametric study. Powder Technol. 291, 7–13 (2016)

  35. 35.

    F.G. Cuevas, J. Cintas, J.M. Montes, J.M. Gallardo, Al-Ti powder produced through mechanical alloying for different times. J. Mater. Sci. 41(24), 8339–8346 (2006)

  36. 36.

    E. Basiri Tochaee, H.R. Madaah Hosseini, S.M. Seyed Reihani, On the fracture toughness behavior of in situ Al-Ti composites produced via mechanical alloying and hot extrusion. J. Alloys Compd. 681, 12–21 (2016)

  37. 37.

    J. Benjamin, Mechanical alloying. Sci. Am. 234, 40–48 (1976)

  38. 38.

    Z. Gao, H. Luo, Q. Li, Y. Wan, Preparation and characterization of Ti-10Mo alloy by mechanical alloying. Metallogr. Microstruct. Anal. 1(6), 282–289 (2012)

  39. 39.

    A. Chabok, K. Dehghani, Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing. J. Mater. Eng. Perform. 22(5), 1324–1330 (2013)

  40. 40.

    A. Borah, P.S. Robi, A. Srinivasan, Synthesis of nano-crystalline RuAl by mechanical alloying. Met. Mater. Int. 13(4), 293–302 (2007)

  41. 41.

    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46(1–2), 1–184 (2001)

  42. 42.

    A. Bernatiková, P. Novák, F. Průša, Preparation of Ti-Al and Fe-Al alloys by mechanical alloying. Acta Phys. Pol. A 134(3), 733–737 (2018)

  43. 43.

    J.S. Benjamin, Fundamentals of mechanical alloying. Mater. Sci. Forum 88–90, 1–18 (1992)

  44. 44.

    L. Lu, M.O. Lai, C.W. Ng, Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying. Mater. Sci. Eng. A 252, 203–211 (1998)

  45. 45.

    T.T. Bui, X.Q. Le, D.P. To, V.T. Nguyen, Investigation of typical properties of nanocrystalline iron powders prepared by ball milling techniques. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 045003 (2013)

  46. 46.

    F.G. Cuevas, J.M. Montes, J. Cintas, J.M. Gallardo, Production of Al–Al3Ti powders by mechanical alloying and annealing. Powder Metall. 48(4), 365–370 (2013)

  47. 47.

    J.B. Al-dabbagh, R.M. Tahar, M. Ishak, S. Aisyah, Structural and phase formation of TiAl alloys synthesized by mechanical alloying and heat treatment. Int. J. Nanoelectron. Mater. 8, 23–32 (2015)

  48. 48.

    C. Suryanarayana, G.-H. Chen, A. Frefer, F.H. Froes, Structural evolution of mechanically alloyed Ti-Al alloys. Mater. Sci. Eng. A 158(1), 93–101 (1992)

  49. 49.

    F. Chai, D. Zhang, Y. Li, Effect of thermal history on microstructures and mechanical properties of AZ31 magnesium alloy prepared by friction stir processing. Materials (Basel) 7(3), 1573–1589 (2014)

Download references

Author information

Correspondence to Manoj Kumar Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, M.K., Siddiquee, A.N. & Khan, Z.A. Characterization of Ti–Al Intermetallic Synthesized by Mechanical Alloying Process. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-019-00603-w

Download citation

Keywords

  • Aluminium
  • Ball milling
  • BPR
  • Mechanical alloying
  • Titanium
  • Titanium aluminide