Microstructure, Texture Characteristics, Mechanical and Bio-Corrosion Properties of High Strain Rate Rolled Mg–Zn–Sr Alloys

  • Hongge Yan
  • Xiaole GongEmail author
  • Jihua ChenEmail author
  • Meixin Cheng


Microstructure, texture characteristics, mechanical and bio-corrosion properties of the Mg–5Zn–xSr alloys (x = 0, 0.2, 0.6, 1.0) prepared by high strain rate rolling are carefully studied. A low level of Sr addition enhances dynamic precipitation of nano-scale MgZn2 particles in the as-rolled Mg–5Zn alloy, with 0.6%Sr showing the maximum efficiency. These high-density MgZn2 particles can pin grain boundaries of dynamic recrystallization grains and inhibit their growth. A low level of Sr addition (≤ 0.6%) enhances the (0002) basal texture, but 1.0%Sr is just the reverse. The as-rolled Mg–5Zn–0.6Sr alloy exhibits the best combination of ultimate tensile strength (359 MPa) and elongation to rupture (20%). The high strength can be attributable to a reduced grain size, precipitation and basal texture strengthening. The Mg–5Zn–xSr alloys exhibit excellent bio-corrosion resistance, but a minor Sr addition cannot bring about further bio-corrosion resistance improvement due to the multiple actions of grain size, DRX degree, dynamic precipitates and texture characteristics. The 0.6%Sr addition can greatly improve the strength of the as-rolled alloy at no expense of bio-corrosion resistance.

Graphic Abstract


Mg–Zn–Sr alloy High strain rate rolling Mechanical properties Bio-corrosion Dynamic precipitation 



This work is supported by National Natural Science Foundation of China (Grant No. 51571089).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M.P. Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27, 1728–1734 (2006)CrossRefGoogle Scholar
  2. 2.
    M.H. Yoo, Metall. Trans. A 12, 409–418 (1981)CrossRefGoogle Scholar
  3. 3.
    M. Alvarez-Lopez, D. Pereda Maria, J.A. del Valle, M. Fernandez-Lorenzo, M.C. Garcia-Alonso, O.A. Ruano, M.L. Escudero, Acta Biomater. 6, 1763–1771 (2010)CrossRefGoogle Scholar
  4. 4.
    P. Cao, M. Qian, D.H. StJohn, Scr. Mater. 53, 841–844 (2005)CrossRefGoogle Scholar
  5. 5.
    J.H. Gao, S.K. Guan, Z.W. Ren, Mater. Lett. 65, 691–693 (2011)CrossRefGoogle Scholar
  6. 6.
    C. Op’t Hoog, N. Birbilis, Y. Estrin, Adv. Eng. Mater. 10, 579–582 (2008)CrossRefGoogle Scholar
  7. 7.
    G.R. Argade, S.K. Panigrahi, R.S. Mishra, Corros. Sci. 58, 145–151 (2012)CrossRefGoogle Scholar
  8. 8.
    H.Y. Choi, W.J. Kim, J. Mech. Behav. Biomed. 51, 291–301 (2015)CrossRefGoogle Scholar
  9. 9.
    J.B. Clark, Acta Metall. 13, 1281–1289 (1965)CrossRefGoogle Scholar
  10. 10.
    L.Y. Wei, G.L. Dunlop, H. Westengen, Metall. Mater. Trans. A 26, 1705–1716 (1995)CrossRefGoogle Scholar
  11. 11.
    B. Langelier, A. Korinek, P. Donnadieu, S. Esmaeili, Mater. Charact. 120, 18–29 (2016)CrossRefGoogle Scholar
  12. 12.
    J.M. Rosalie, H. Somekawa, A. Singh, T. Mukai, J. Alloys Compd. 550, 114–123 (2013)CrossRefGoogle Scholar
  13. 13.
    C.X. Xu, X. Wang, J.S. Zhang, Z.G. Zhang, Rare Met. Mater. Eng. 43, 1809–1814 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Tian, H. Huang, G.Y. Yuan, C.L. Chen, Z.C. Wang, W.J. Ding, Mater. Lett. 130, 236–239 (2014)CrossRefGoogle Scholar
  15. 15.
    B. Langelier, G. Sha, A. Korinek, P. Donnadieu, S.P. Ringer, S. Esmaeili, Mater. Des. 119, 290–296 (2017)CrossRefGoogle Scholar
  16. 16.
    S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, J. Tian, Scr. Mater. 63, 985–988 (2010)CrossRefGoogle Scholar
  17. 17.
    S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, B. Su, Y.G. Du, X.Z. Liao, Scr. Mater. 67, 404–407 (2012)CrossRefGoogle Scholar
  18. 18.
    Z.Y. Zou, J.H. Chen, H.G. Yan, B. Su, X.L. Gong, J. Mater. Eng. Perform. 25, 1974–1985 (2016)CrossRefGoogle Scholar
  19. 19.
    J.H. Chen, G.Q. Chen, H.G. Yan, B. Su, X.L. Gong, B. Zhou, J. Mater. Eng. Perform. 26, 4748–4759 (2017)CrossRefGoogle Scholar
  20. 20.
    M.X. Cheng, J.H. Chen, H.G. Yan, B. Su, Z.H. Yu, X.L. Gong, J. Alloys Compd. 691, 95–102 (2017)CrossRefGoogle Scholar
  21. 21.
    H.Y. Lai, J.Y. Li, J.X. Li, Y. Zhang, Y.Z. Xu, J. Mater. Sci. Mater. Med. 29, 87–101 (2018)CrossRefGoogle Scholar
  22. 22.
    Q.M. Tian, C.X. Zhang, M. Deo, L. Rivera-Castaneda, N. Masoudipour, R.G. Guan, H.N. Liu, Mater. Sci. Eng. C 96, 248–262 (2019)CrossRefGoogle Scholar
  23. 23.
    K. Ohishi, C.L. Mendis, T. Homma, S. Kamado, T. Ohkubo, K. Hono, Acta Mater. 57, 5593–5604 (2009)CrossRefGoogle Scholar
  24. 24.
    Harpreet.S. Brar, Joey. Wong, Michele.V. Manuel, J. Mech. Behav. Biomed. 7, 87–95 (2012)CrossRefGoogle Scholar
  25. 25.
    J.D. Embury, R.B. Nicholson, Acta Metall. 13, 403–417 (1965)CrossRefGoogle Scholar
  26. 26.
    C. Wang, Influence Rules and Action Mechanisms of Alloying Elements on the Stack Fault Energy and Twin Segregation Energy of Magnesium Alloy, PhD Thesis (Jilin University, 2015)Google Scholar
  27. 27.
    A. Rollett, F.J. Humphreys, G.S. Rohrer, Recrystallization and Related Annealing Phenomena (Elsevier, Germany, 2004), pp. 121–167Google Scholar
  28. 28.
    I. Basu, T. Al-Samman, Acta Mater. 67, 116–133 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Scr. Mater. 63, 725–730 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Chen, J.H. Chen, H.G. Yan, B. Su, M. Song, S.Q. Zhu, Mater. Des. 100, 58–66 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Homma, C.L. Mendis, K. Hono, S. Kamado, Mater. Sci. Eng. A 527, 2356–2362 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Masoumi, M. Pekguleryuz, Mater. Sci. Eng. A 529, 207–214 (2011)CrossRefGoogle Scholar
  33. 33.
    J.D. Robson, D.T. Henry, B. Davis, Acta Mater. 57, 2739–2747 (2009)CrossRefGoogle Scholar
  34. 34.
    Y.Z. Du, M.Y. Zheng, X.G. Qiao, D.B. Wang, W.Q. Peng, K. Wu, B.L. Jiang, Mater. Sci. Eng. A 656, 67–74 (2016)CrossRefGoogle Scholar
  35. 35.
    A.A. Nayeb-Hashemi, J.B. Clark, ASM Metals Handbook—Alloy Phase Diagrams 7 (ASM International, 1986), pp. 149–156Google Scholar
  36. 36.
    J.F. Nie, Scr. Mater. 48, 1009–1015 (2003)CrossRefGoogle Scholar
  37. 37.
    Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, S.W. Xu, Mater. Des. 85, 549–557 (2015)CrossRefGoogle Scholar
  38. 38.
    T. Al-Samman, Mater. Sci. Eng. A 560, 561–566 (2013)CrossRefGoogle Scholar
  39. 39.
    H. Guo, J.H. Chen, H.G. Yan, W.J. Xia, B. Su, X.L. Gong, Z.L. Yu, Mater. Res. Express (2019). CrossRefGoogle Scholar
  40. 40.
    Z. Shi, A. Atrens, Corros. Sci. 53, 226–246 (2011)CrossRefGoogle Scholar
  41. 41.
    X.P. Zhang, Z.P. Zhao, F.M. Wu, Y.L. Wang, J. Wu, J. Mater. Sci. 42, 8523–8528 (2007)CrossRefGoogle Scholar
  42. 42.
    B.S. Jie, Y.T. Tan, K.S. Fong, M.J. Tan, Procedia Eng. 207, 1475–1480 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Taltavull, Z. Shi, B. Torres, J. Rams, A. Atrens, J. Mater. Sci. Mater. Med. 25, 329–345 (2014)CrossRefGoogle Scholar
  44. 44.
    Z. Pu, G.L. Song, S. Yang, J.C. Outeiro, O.W. Dillon Jr., D.A. Puleo, I.S. Jawahir, Corros. Sci. 57, 192–201 (2012)CrossRefGoogle Scholar
  45. 45.
    R.L. Xin, Y.M. Luo, A.L. Zuo, J.C. Gao, Q. Liu, Mater. Lett. 72, 1–4 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHunan UniversityChangshaChina
  2. 2.Hunan Provincial Key Laboratory of Spray Deposition Technology and ApplicationHunan UniversityChangshaChina

Personalised recommendations