Numerical and Experimental Analysis of Rotating Backward Extrusion as a New SPD Process

  • Xin Che
  • Qiang WangEmail author
  • Beibei Dong
  • Mu Meng
  • Zhiming Zhang


Rotating backward extrusion (RBE) as a new severe plastic deformation technique is a continuous process to produce cylindrical tubes with fine grains and superior properties. In this study, the RBE process with an open punch was applied to the AZ80 alloy at 653 K, and the deformation mechanisms and the microstructure evolution were examined by the finite element method (FEM) and thermal simulation experiment. The results showed that the effective strain of the RBE process was higher than that of the conventional backward extrusion (CBE) process, and the strain increased with revolutions increasing. The strain improvement of the RBE process was related to the large cumulative plastic deformation imposed by the continuous rotation of the open punch. Furthermore, the extrusion load was reduced significantly in the RBE process comparing with the CBE process, due to the change of friction stress and stress state of the materials. And the maximum load reduction of the FEM and experiment was 47.33% and 31.6%, respectively. The average grain size of the RBE sample could be reduced by up to 90% in the region A at 30 N compared with the CBE sample. The maximum increase in microhardness of the RBE sample relative to the CBE sample was 23% at 30 N in the region A. Therefore, the grain refinement and mechanical properties of the materials can be substantially improved by the RBE process.

Graphic Abstract


Severe plastic deformation Rotating backward extrusion AZ80 alloy Finite element analysis Microstructure 



This work was financially supported by the National Key Research and Development Program (2016YFB0301103-3); and the National Natural Science Foundation of China (51775520); and the Shanxi Graduate Education Innovation Project (2019BY103).


  1. 1.
    Y. Estrin, A. Vinogradov, Acta Mater. 61, 782 (2013)CrossRefGoogle Scholar
  2. 2.
    T. Mungole, P. Kumar, M. Kawasaki, T.G. Langdon, J. Mater. Sci. 50, 3549 (2015)CrossRefGoogle Scholar
  3. 3.
    V.M. Segal, Mater. Sci. Eng. A 271, 322 (1999)CrossRefGoogle Scholar
  4. 4.
    G.S. Dyakonov, S. Mironov, I.P. Semenova, R.Z. Valiev, S.L. Semiatin, Acta Mater. 173, 174 (2019)CrossRefGoogle Scholar
  5. 5.
    B. Li, B.G. Teng, G.X. Chen, Mater. Sci. Eng. A 774, 396 (2019)CrossRefGoogle Scholar
  6. 6.
    Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)CrossRefGoogle Scholar
  7. 7.
    W. Habila, H. Azzeddine, B. Mehdi et al., Mater. Charact. 147, 242 (2019)CrossRefGoogle Scholar
  8. 8.
    A.P. Zhilyaev, G.V. Nurislamova, B.-K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdone, Acta Mater. 51, 753 (2003)CrossRefGoogle Scholar
  9. 9.
    W.T. Sun, X.G. Qiao, M.Y. Zheng et al., Acta Mater. 151, 260 (2019)CrossRefGoogle Scholar
  10. 10.
    S. Mizunuma, Mater. Sci. Forum 503–504, 185 (2006)CrossRefGoogle Scholar
  11. 11.
    W. Bochniak, A. Korbel, Mater. Sci. Technol. 16, 664 (2000)CrossRefGoogle Scholar
  12. 12.
    W. Bochniak, A. Korbel, J. Mater. Process. Technol. 134, 120 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Korbel, W. Bochniak, Scr. Mater. 51, 755 (2004)CrossRefGoogle Scholar
  14. 14.
    A. Korbel, W. Bochniak, P. Ostachowski, L. Błaż, Metall. Mater. Trans. A 42, 2881 (2011)CrossRefGoogle Scholar
  15. 15.
    L.X. Kong, L. Lin, P.D. Hodgson, Mater. Sci. Eng. A 308, 209 (2001)CrossRefGoogle Scholar
  16. 16.
    X. Ma, M.R. Barnett, Y.H. Kim, Int. J. Mech. Sci. 45, 1717 (2003)CrossRefGoogle Scholar
  17. 17.
    X. Ma, M.R. Barnett, Y.H. Kim, Int. J. Mech. Sci. 46, 449 (2004)CrossRefGoogle Scholar
  18. 18.
    Q. Wang, Z.M. Zhang, J.M. Yu, Y. Xue, Procedia Eng. 207, 383 (2017)CrossRefGoogle Scholar
  19. 19.
    J.M. Yu, Z.M. Zhang, Q. Wang, H.Y. Hao, J.Y. Cui, L. Li, Mater. Lett. 215, 195 (2018)CrossRefGoogle Scholar
  20. 20.
    Y. Xue, Z.M. Zhang, Y.J. Wu, G. Lu, Adv. Mater. Res. 328–330, 2394 (2011). CrossRefGoogle Scholar
  21. 21.
    M. Costas, D. Morin, O.S. Hopperstad, T. Børvik, M. Langseth, J. Mech. Phys. Solids 123, 190 (2019)CrossRefGoogle Scholar
  22. 22.
    S. Fatemi-Varzaneh, A. Zarei-Hanzaki, Mater. Sci. Eng. A 504, 104 (2009)CrossRefGoogle Scholar
  23. 23.
    G. Faraji, H. Jafarzadeh, H. Jeong, M. Mashhadi, H. Kim, Mater. Des. 35, 251 (2012)CrossRefGoogle Scholar
  24. 24.
    X.S. Xia, Q. Chen, Z.D. Zhao, M.L. Ma, X.G. Li, K. Zhang, J. Alloys Compd. 623, 62 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Tsuji, B.L. Li, Mater. Sci. Forum 539–543, 2837 (2007)CrossRefGoogle Scholar
  26. 26.
    L.S. Toth, C. Gu, Mater. Charact. 92, 1 (2014)CrossRefGoogle Scholar
  27. 27.
    R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, Adv. Eng. Mater. 8, 1046 (2006)CrossRefGoogle Scholar
  28. 28.
    T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, R. Pippan, Acta Mater. 53, 393 (2005)CrossRefGoogle Scholar
  29. 29.
    R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, A. Bachmaier, Annu. Rev. Mater. Res. 40(1), 319 (2010). CrossRefGoogle Scholar
  30. 30.
    C. Xu, K. Xia, T.G. Langdon, Acta Mater. 55, 2351 (2007)CrossRefGoogle Scholar
  31. 31.
    J.H. Li, F.G. Li, C. Zhao, H. Chen, X.K. Ma, J. Li, Mater. Sci. Eng. A 656, 142 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2020

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations