Advertisement

Retardation of Grain Growth in Al 3003 Nanocomposite Weldment Using ARB Filler Metal

  • K. R. Ramkumar
  • S. NatarajanEmail author
Article
  • 45 Downloads

Abstract

This research demonstrates the feasibility of filler rod fabrication to develop nanocomposite weldment to enhance the joint strength via ARB technique. Al 3003 alloys were joined through GTAW by melting fabricated nanocomposite filler metal. TiO2 nanoparticles were chosen as reinforcement from 0 to 3 wt%. Roll bonding is desired owing to the proper distribution of TiO2 particles. SEM depicted the distribution of reinforcement particles in the grain boundaries. TEM disclosed the uniformity in particulates distribution, peening of dislocation and strain fields in 12 wt% TiO2 reinforced nanocomposite weldment. EBSD portrayed the grain refinement occurred in the weld zone due to reinforcement addition. The improvement in impact and bending strength were due to excellent bonding between the Al and reinforcement particles and excellent load transfer ability provided by reinforcement particles.

Graphic Abstract

Keywords

Al TiO2 Nanocomposite ARB, GTAW Bending Impact 

Abbreviations

Al

Aluminium

ARB

Accumulative roll bonding

BS

Bending strength

CNTs

Carbon nanotubes

CTE

Coefficient of thermal expansion

EBSD

Electron back scattered diffraction image

GNSs

Graphene nanosheets

GS

Grain size

GTAW

Gas tungsten arc welding

H

Hardness

IS

Impact strength

l × b × t

Length × breadth × thickness

MMCs

Metal matrix composites

SAD

Selective area diffraction

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

TiO2

Titanium dioxide

UTS

Ultimate tensile strength

XRD

X ray diffraction

Notes

References

  1. 1.
    K.R. Ramkumar, S. Natarajan, Materials Science & Engineering A Investigations on microstructure and mechanical properties of TiO2 Nanoparticles addition in Al 3003 alloy joints by gas tungsten arc welding. Mater. Sci. Eng. A 727, 51–60 (2018)CrossRefGoogle Scholar
  2. 2.
    K.R. Ramkumar, S. Sivasankaran, A.S. Alaboodi, Effect of alumina content on microstructures, mechanical, wear and machining behavior of Cu-10Zn nanocomposite prepared by mechanical alloying and hot-pressing. J. Alloys Compd. 709, 129–141 (2017)CrossRefGoogle Scholar
  3. 3.
    K. JohnJoshua, S.J. Vijay, D. Philip Selvaraj, Effect of nano TiO2 particles on microhardness and microstructural behavior of AA7068 metal matrix composites. Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.08.077 CrossRefGoogle Scholar
  4. 4.
    A. Sabetghadam-Isfahani, M. Abbasi, S.M.H. Sharifi, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Microstructure and mechanical properties of carbon nanotubes/AZ31 magnesium composite gas tungsten arc welding filler rods fabricated by powder metallurgy. Diam. Relat. Mater. 69, 160–165 (2016).  https://doi.org/10.1016/j.diamond.2016.08.017 CrossRefGoogle Scholar
  5. 5.
    A. Sabetghadam-Isfahani, H. Zalaghi, S. Hashempour, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Fabrication and properties of ZrO2/AZ31 nanocomposite fillers of gas tungsten arc welding by accumulative roll bonding. Arch. Civ. Mech. Eng. 16, 397–402 (2016).  https://doi.org/10.1016/j.acme.2016.02.005 CrossRefGoogle Scholar
  6. 6.
    Z. Xing, S. Kang, H. Kim, Structure and properties of AA 3003 alloy produced by accumulative roll bonding process. J. Mater. Sci. 37, 717–722 (2002)CrossRefGoogle Scholar
  7. 7.
    A.R. Dabiri, R. Yousefi Mojallal, E. Ahmadi, M. Fattahi, S. Amirkhanlou, Y. Fattahi, Effect of ZrO2 nanoparticles on the impact properties of shielded metal arc welds. Mater. Lett. 158, 325–328 (2015).  https://doi.org/10.1016/j.matlet.2015.05.159 CrossRefGoogle Scholar
  8. 8.
    C.W. Schmidt, C. Knieke, V. Maier, H.W. Höppel, W. Peukert, M. Göken, Accelerated grain refinement during accumulative roll bonding by nanoparticle reinforcement. Scr. Mater. 64, 245–248 (2011).  https://doi.org/10.1016/j.scriptamat.2010.10.013 CrossRefGoogle Scholar
  9. 9.
    M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, S. Akhavan, Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires. Micron. 64, 20–27 (2014).  https://doi.org/10.1016/j.micron.2014.03.013 CrossRefGoogle Scholar
  10. 10.
    N. Muralidharan, K. Chockalingam, I. Dinaharan, K. Kalaiselvan, Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles. J. Alloys Compd. 735, 2167–2174 (2018).  https://doi.org/10.1016/j.jallcom.2017.11.371 CrossRefGoogle Scholar
  11. 11.
    J. David Raja Selvam, I. Dinaharan, S. Vibin Philip, P.M. Mashinini, Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2 + Al2O3) hybrid aluminum matrix composites. J. Alloys Compd. 740, 529–535 (2018).  https://doi.org/10.1016/j.jallcom.2018.01.016 CrossRefGoogle Scholar
  12. 12.
    M. Fattahi, M. Mohammady, N. Sajjadi, M. Honarmand, Y. Fattahi, S. Akhavan, Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints. J. Mater. Process. Technol. 217, 21–29 (2015).  https://doi.org/10.1016/J.JMATPROTEC.2014.10.023 CrossRefGoogle Scholar
  13. 13.
    K.R. Ramkumar, S. Ilangovan, S. Sivasankaran, A.S. Alaboodi, Experimental investigation on synthesis and structural characterization of Cu-Zn-x wt%Al2O3 (x = 0, 3, 6, 9 & 12%) nanocomposites powders through mechanical alloying. J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2016.07.026 CrossRefGoogle Scholar
  14. 14.
    K.R. Ramkumar, S. Natarajan, Tensile properties and strengthening effects of Al 3003 alloy weldment reinforced with TiO2 nanoparticles. Compos. B 175, 107159 (2019)CrossRefGoogle Scholar
  15. 15.
    K.R. Ramkumar, H. Bekele, S. Sivasankaran, Experimental investigation on mechanical and turning behavior of al 7075/x % wt. TiB2-1% Gr in situ hybrid composite. Adv. Mater. Sci. Eng. (2015).  https://doi.org/10.1155/2015/727141 CrossRefGoogle Scholar
  16. 16.
    M. Alizadeh, M.H. Paydar, S. Amirkhanlou, R. Jamaati, B. Niroumand, M.R. Toroghinejad, Fabrication of nanostructure Al/SiCP composite by accumulative roll bonding (ARB) process. J. Alloys Compd. 492, 231–235 (2010).  https://doi.org/10.1016/j.jallcom.2009.12.026 CrossRefGoogle Scholar
  17. 17.
    M. Fattahi, N. Nabhani, M.R. Vaezi, E. Rahimi, Improvement of impact toughness of AWS E6010 weld metal by adding TiO2 nanoparticles to the electrode coating. Mater. Sci. Eng. A 528, 8031–8039 (2011).  https://doi.org/10.1016/j.msea.2011.07.035 CrossRefGoogle Scholar
  18. 18.
    M. Fattahi, V. Noei Aghaei, A.R. Dabiri, S. Amirkhanlou, S. Akhavan, Y. Fattahi, Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding. Mater. Sci. Eng. A 648, 47–50 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Fattahi, N. Nabhani, E. Rashidkhani, Y. Fattahi, S. Akhavan, N. Arabian, A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal. Micron. 54, 28–35 (2013).  https://doi.org/10.1016/j.micron.2013.07.004 CrossRefGoogle Scholar
  20. 20.
    E. Ahmadi, M. Ranjkesh, E. Mansoori, M. Fattahi, R.Y. Mojallal, S. Amirkhanlou, Microstructure and mechanical properties of Al/ZrC/TiC hybrid nanocomposite filler metals of tungsten inert gas welding fabricated by accumulative roll bonding. J. Manuf. Process. 26, 173–177 (2017).  https://doi.org/10.1016/j.jmapro.2017.02.012 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2020

Authors and Affiliations

  1. 1.Centre of Excellence in Corrosion and Surface Engineering (CECASE)National Institute of TechnologyTiruchirappalliIndia

Personalised recommendations