Advertisement

Dynamic Compression Behavior of a Mg–Gd-Based Alloy at Elevated Temperature

  • Changping TangEmail author
  • Kai Wu
  • Wenhui LiuEmail author
  • Di Feng
  • Guoliang Zuo
  • Wuying Liang
  • Yue Yang
  • Xu Chen
  • Quan Li
  • Xiao Liu
Article
  • 8 Downloads

Abstract

The dynamic compression behavior and microstructure evolution at 400 °C of an extruded Mg–8Gd–4Y–Nd–Zr alloy with different tempers were investigated. The peak-aged samples exhibit the highest compressive strength, followed by as-extruded samples and over-aged samples. The highest dynamic compressive strength of 582 MPa was achieved by peak-aged sample compressed at 1224 s−1. The high strength was attributed to the formation of abundant thermally stable βʹ precipitates and some dynamic precipitates. The dynamic compressive strength of peak-aged sample and over-aged sample is not sensitive to strain rates, while that of the as-extruded sample is sensitive to strain rates. The dynamic compressive strength of the as-extruded alloy can reach 535 MPa when compressed at 2024 s−1. The high strength was mainly ascribed to the formation of numerous dynamic precipitates and the work hardening effect caused by dislocations. The cracks are composed of crack that is 45° to loading direction on the cylindrical surface and crack on the compressed surface. Microstructure observation indicates that the crack was easily propagated along the interface between the adiabatic shear band and matrix, grain boundaries. The equilibrium phase β in over-aged sample was unable to hinder the crack propagation.

Graphic Abstract

Keywords

Mg–Gd-based alloy Dynamic compression Precipitate Mechanical property Fracture 

Notes

Acknowledgements

The authors would like to appreciate the financial supports from National Natural Science Foundation of China (Grant Nos. 51605159 and 51601062), and Hunan Provincial Natural Science Foundation of China (Grant No. 2016JJ5042).

References

  1. 1.
    K. Wen, K. Liu, Z.H. Wang, S.B. Li, W.B. Du, Mater. Sci. Eng. A 674, 33 (2016)CrossRefGoogle Scholar
  2. 2.
    H.M. Xie, B. Jiang, J.J. He, X.S. Xia, F.S. Pan, Tribol. Int. 93, 63 (2016)CrossRefGoogle Scholar
  3. 3.
    Y. Zou, L.H. Zhang, Y. Li, H.T. Wang, J.B. Liu, P.K. Liaw, H.B. Bei, Z.W. Zhang, J. Alloys Compd. 735, 2625 (2018)CrossRefGoogle Scholar
  4. 4.
    J.K. Zheng, R.C. Luo, X.Q. Zeng, B. Chen, Mater. Des. 137, 316 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Sun, L. Jin, J. Dong, F.H. Wang, S. Dong, W.J. Ding, A.A. Luo, Int. J. Plast. (2019).  https://doi.org/10.1016/j.ijplas.2019.07.014
  6. 6.
    V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, G. Myilsamy, Met. Mater. Int. (2019).  https://doi.org/10.1007/s12540-019-00346-8
  7. 7.
    C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, X.Y. Lv, Mater. Sci. Eng. A 547, 93 (2012)CrossRefGoogle Scholar
  8. 8.
    W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013)CrossRefGoogle Scholar
  9. 9.
    Z.J. Yu, Y.D. Huang, X. Qiu, G.F. Wang, F.Z. Meng, N. Hort, J. Meng, Mater. Sci. Eng. A 622, 121 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Xu, G.H. Fan, T. Nakata, X. Liang, Y.Q. Chi, X.G. Qiao, G.J. Cao, T.T. Zhang, M. Huang, K.S. Miao, M.Y. Zheng, S. Kamado, H.L. Xie, Metall. Mater. Trans. A 49, 1931 (2018)CrossRefGoogle Scholar
  11. 11.
    X.W. Heng, Y. Zhang, W. Rong, Y.J. Wu, L.M. Peng, Mater. Des. 169, 107666 (2019)CrossRefGoogle Scholar
  12. 12.
    S.J. Liu, K. Wang, J.F. Wang, S. Huang, S.Q. Gao, X. Peng, H. Hu, F.S. Pan, Mater. Sci. Eng. A 758, 96 (2019)CrossRefGoogle Scholar
  13. 13.
    W. Rong, Y. Zhang, Y.J. Wu, Y.L. Chen, M. Sun, J. Chen, L.M. Peng, Mater. Sci. Eng. A 740–741, 262 (2019)CrossRefGoogle Scholar
  14. 14.
    W.S. Lee, W.C. Sue, C.F. Lin, C.J. Wu, J. Mater. Process. Technol. 100, 116 (2000)CrossRefGoogle Scholar
  15. 15.
    W.L. Zhang, X.F. Chen, B.C. Zhuo, P.J. Li, L.J. He, Mater. Sci. Eng. A 730, 336 (2018)CrossRefGoogle Scholar
  16. 16.
    P.L. Mao, J.C. Yu, Z. Liu, Y. Dong, J. Magn. Alloys 1, 64 (2013)CrossRefGoogle Scholar
  17. 17.
    J.C. Yu, Z. Liu, Y. Dong, Z. Wang, J. Magn. Alloys 3, 134 (2015)CrossRefGoogle Scholar
  18. 18.
    C.P. Tang, X.Z. Wang, W.H. Liu, D. Feng, K. Wu, C. Zhang, G.D. Miao, W.Y. Liang, J. Li, X. Liu, Q. Li, Mater. Sci. Eng. A 759, 172 (2019)CrossRefGoogle Scholar
  19. 19.
    S.M. Zhu, J.F. Nie, M.A. Gibson, M.A. Easton, Scr. Mater. 77, 21 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding, J.F. Nie, Mater. Sci. Eng. A 431, 322 (2006)CrossRefGoogle Scholar
  21. 21.
    X.M. Zhang, C.P. Tang, Y.L. Deng, L. Yang, W.J. Liu, J. Alloys Compd. 509, 6170 (2011)CrossRefGoogle Scholar
  22. 22.
    C.P. Tang, W.H. Liu, Y.Q. Chen, X. Liu, Y.L. Deng, Mater. Sci. Eng. A 659, 63 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.High Temperature Wear Resistant Materials and Preparation Technology of Hunan Province National Defence Science and Technology Laboratory, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.Department of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  3. 3.Zhuzhou CRRC Timly Forge Limited CompanyZhuzhouChina
  4. 4.School of Materials Science and EngineeringXiangtan UniversityXiangtanChina
  5. 5.Chongqing Academy of Science and TechnologyChongqingChina

Personalised recommendations