Improvement of Thermoplastic Forming Ability of Ti–Zr–Ni–Cu Metallic Glass by Addition of Sn

  • Yeong-Seong Kim
  • Woo-Chul Kim
  • Won-Tae Kim
  • Do-Hyang KimEmail author


Ti–Zr–Ni–Cu metallic glass attracts an attention as a precursor of superelastic alloy that can be deformed into nm scale complex shapes. However, since the thermal stability of Ti–Zr–Ni–Cu metallic glass in the supercooled liquid region is quite low, application of thermoplastic forming is limited. Therefore, in the present study, the effect of Sn addition on thermoplastic forming ability of Ti–Zr–Ni–Cu metallic glass has been investigated. Sn containing (Ti35Zr15Ni35Cu15)99Sn1 metallic glass exhibits longer incubation time before onset of crystallization than Ti35Zr15Ni35Cu15 metallic glass, resulting in significant improvement of thermoplastic forming ability. The crystallization behavior changes from three-dimensional growth of saturated nuclei to three-dimensional growth with constant nucleation rate with the addition of Sn. The overall activation energy for crystallization of (Ti35Zr15Ni35Cu15)99Sn1 metallic glass is higher than that of Ti35Zr15Ni35Cu15 metallic glass, indicating that the thermal stability of metallic glass is improved by addition of Sn. Because nuclei are continuously generated during the crystallization in (Ti35Zr15Ni35Cu15)99Sn1, the average grain size is much smaller than that in Ti35Zr15Ni35Cu15.

Graphic Abstract


Metallic glass Thermoplastic forming Crystallization 



This work was supported by the Samsung Science & Technology Foundation. W.T. Kim acknowledges the support from Cheongju University through 2017 sabbatical leave program.


  1. 1.
    K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511–678 (2005)CrossRefGoogle Scholar
  2. 2.
    A.V. Shelyakov, N.N. Sitnikov, V.V. Koledov, D.S. Kuchin, A.I. Irzhak, N.Y. Tabachkova, Melt-spun thin ribbons of shape memory TiNiCu alloy for micromechanical applications. Int. J. Smart Nano Mater. 2(2), 68–77 (2011)CrossRefGoogle Scholar
  3. 3.
    Y.Y. Zhao, A. Inoue, C. Chang, J. Liu, B. Shen, X. Wang, R.W. Li, Composition effect on intrinsic plasticity or brittleness in metallic glasses. Sci. Rep. 4, 5733 (2014)CrossRefGoogle Scholar
  4. 4.
    G. Kumar, H.X. Tang, J. Schroers, Nanomoulding with amorphous metals. Nature 457(7231), 868–872 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Schroers, Q. Pham, A. Peker, N. Paton, R.V. Curtis, Blow molding of bulk metallic glass. Scr. Mater. 57(4), 341–344 (2007)CrossRefGoogle Scholar
  6. 6.
    H.M. Chiu, G. Kumar, J. Blawzdziewicz, J. Schroers, Thermoplastic extrusion of bulk metallic glass. Scr. Mater. 61(1), 28–31 (2009)CrossRefGoogle Scholar
  7. 7.
    V. Kolomytsev, A. Pasko, A. Sezonenko, Phase selection for shape memory alloys and specific features of pseudobinary phase diagrams. Arch. Metall. Mater. 49–7, 825 (2004)Google Scholar
  8. 8.
    P. Ochin, V. Kolomytsev, A. Pasko, A. Sezonenko, P. Vermaut, F. Prima, R. Portier, Amorphous multielementary alloys: a preparation route for shape memory alloys. J. Alloys Compd. 434–435, 268–271 (2007)CrossRefGoogle Scholar
  9. 9.
    W.-C. Kim, Y.-J. Kim, Y.-S. Kim, J.-I. Hyun, S.-H. Hong, W.-T. Kim, D.-H. Kim, Enhancement of superelastic property in Ti–Zr–Ni–Cu alloy by using glass alloy precursor with high glass forming ability. Acta Mater. 173, 130–141 (2019)CrossRefGoogle Scholar
  10. 10.
    A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279–306 (2000)CrossRefGoogle Scholar
  11. 11.
    K. Csach, O.P. Bobrov, V.A. Khonik, S.A. Lyakhov, K. Kitagawa, Relationship between the shear viscosity and heating rate of metallic glasses below Tg. Phys. Rev. B 73(9), 092107 (2006)CrossRefGoogle Scholar
  12. 12.
    H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)CrossRefGoogle Scholar
  13. 13.
    K.F. Kelton, Analysis of crystallization kinetics. Mater. Sci. Eng. A 226–228, 142–150 (1997)CrossRefGoogle Scholar
  14. 14.
    E. Illeková, On the various activation energies at crystallization of amorphous metallic materials. J. Non-Cryst. Solids 68(1), 153–156 (1984)CrossRefGoogle Scholar
  15. 15.
    M. Saxena, Crystallization kinetics of amorphous Tex(Bi2Se3)1−x glasses. Bull. Mater. Sci. 27(6), 543–546 (2004)CrossRefGoogle Scholar
  16. 16.
    L.C. Chen, F. Spaepen, Calorimetric evidence for the micro-quasicrystalline structure of ‘amorphous’ Al/transition metal alloys. Nature 336(6197), 366–368 (1988)CrossRefGoogle Scholar
  17. 17.
    M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9(2), 177–184 (1941)CrossRefGoogle Scholar
  18. 18.
    M.M. Rahvard, M. Tamizifar, S.M.A. Boutorabi, The effect of Ag addition on the non-isothermal crystallization kinetics and fragility of Zr 56 Co 28 Al 16 bulk metallic glass. J. Non-Cryst. Solids 481, 74–84 (2018)CrossRefGoogle Scholar
  19. 19.
    S. Ranganathan, M. Von Heimendahl, The three activation energies with isothermal transformations: applications to metallic glasses. J. Mater. Sci. 16(9), 2401–2404 (1981)CrossRefGoogle Scholar
  20. 20.
    M. Avrami, Kinetics of phase change. I general theory. J. Chem. Phys. 7(12), 1103–1112 (1939)CrossRefGoogle Scholar
  21. 21.
    Y.D. Sun, P. Shen, Z.Q. Li, J.S. Liu, M.Q. Cong, M. Jiang, Kinetics of crystallization process of Mg–Cu–Gd based bulk metallic glasses. J. Non-Cryst. Solids 358(8), 1120–1127 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • Yeong-Seong Kim
    • 1
  • Woo-Chul Kim
    • 1
  • Won-Tae Kim
    • 2
  • Do-Hyang Kim
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.Department of Optical EngineeringCheongju UniversityCheongjuRepublic of Korea

Personalised recommendations