Advertisement

Microstructure Stability and Its Influence on the Mechanical Properties of CrMnFeCoNiAl0.25 High Entropy Alloy

  • Lijing Lin
  • Xin Xian
  • Zhihong ZhongEmail author
  • Yucheng WuEmail author
  • Peter K. Liaw
Article
  • 72 Downloads

Abstract

The effect of long-term thermal exposure at 700 °C on the microstructure and mechanical behavior of as-cast CrMnFeCoNiAl0.25 was investigated. Results indicated that microscopically, the as-cast alloy was not an equilibrium alloy to maintain a single FCC structure after long-term aging. The strip-like sigma phase (Cr-rich σ phase) and B2 phase (NiAl) precipitated in the FCC matrix and coarsened when the exposure time was increased. Due to the increased volume fraction and the strengthening of these precipitates, the yield strength and Vickers hardness increased considerably with increasing the thermal exposure time up to 2000 h. The yield strength increased from 272 MPa for the as-cast alloy to 993 MPa for the alloy exposed for 2000 h. The hardness increased up to 322 Hv for the alloy exposed for 2000 h. However, the yield strength decreased to 664 MPa for the alloy exposed for 4000 h, owing to the coarsening of precipitates. The alloy maintained a good compressive plasticity after long-term aging.

Graphic Abstract

Keywords

High-entropy alloys Phase stability Aging Mechanical properties 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51401071), the National Magnetic Confinement Fusion Science Program of China (No. 2015GB121003), and the Fundamental Research Funds for the Central Universities (No. PA2018GDQT0018).

References

  1. 1.
    D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)CrossRefGoogle Scholar
  2. 2.
    Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, T. Egami, Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65(12), 1848–1858 (2013)CrossRefGoogle Scholar
  3. 3.
    J.W. Yeh, Overview of high-entropy alloys, in High-Entropy Alloys: Fundamentals and Applications, ed. by M.C. Gao, J.-W. Yeh, P.K. Liaw, Y Zhang, Y. Zhang (Springer, Cham, 2016), pp. 1–19Google Scholar
  4. 4.
    W. Zhang, P.K. Liaw, Y. Zhang, Science and technology in high-entropy alloys. Sci China Mater. 61(1), 2–22 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Chen, L. Lan, X. Shi, H. Yang, M. Zhang, J. Qiao, The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature. J. Alloys Compd. 777, 180–189 (2019)CrossRefGoogle Scholar
  6. 6.
    J.W. Qiao, M.L. Bao, Y.J. Zhao, H.J. Yang, Y.C. Wu, Y. Zhang, J.A. Hawk, M.C. Gao, Rare-earth high entropy alloys with hexagonal close-packed structure. J. Appl. Phys. 124(19), 195101 (2018)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 61, 1–93 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, X. Yang, P.K. Liaw, Alloy design and properties optimization of high-entropy alloys. JOM 64(7), 830–838 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.F. Ye, Q. Wang, Y.L. Zhao, Q.F. He, J. Lu, Y. Yang, Elemental segregation in solid-solution high-entropy alloys: experiments and modeling. J. Alloys Compd. 681, 167–174 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater. 10(6), 534–538 (2008)CrossRefGoogle Scholar
  12. 12.
    L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015)CrossRefGoogle Scholar
  13. 13.
    Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)CrossRefGoogle Scholar
  14. 14.
    E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scr. Mater. 113, 106–109 (2016)CrossRefGoogle Scholar
  15. 15.
    F. He, Z. Wang, Q. Wu, J. Li, J. Wang, C.T. Liu, Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures. Scr. Mater. 113, 106–109 (2016)CrossRefGoogle Scholar
  16. 16.
    Z.Y. Rao, X. Wang, J. Zhu, X.H. Chen, L. Wang, J.J. Si, Y.D. Wu, X.D. Hui, Affordable FeCrNiMnCu high entropy alloys with excellent comprehensive tensile properties. Intermetallics 77, 23–33 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Understanding phase stability of Al–Co–Cr–Fe–Ni high entropy alloys. Mater. Des. 109, 425–433 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Niu, H. Kou, T. Guo, Y. Zhang, J. Wang, J. Li, Strengthening of nanoprecipitations in an annealed Al0.5CoCrFeNi high entropy alloy, Mater. Sci. Eng. A 671, 82-86 (2016)CrossRefGoogle Scholar
  19. 19.
    J. Hou, X. Shi, J. Qiao, Y. Zhang, P.K. Liaw, Y. Wu, Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys. Mater. Design 180, 107910 (2019)CrossRefGoogle Scholar
  20. 20.
    K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)CrossRefGoogle Scholar
  21. 21.
    F. Otto, Y. Yang, H. Bei, E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61(7), 2628–2638 (2013)CrossRefGoogle Scholar
  22. 22.
    J.H. Kim, K.R. Lim, J.W. Won, Y.S. Na, H.-S. Kim, Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures. Mater. Sci. Eng. A 712, 108–113 (2018)CrossRefGoogle Scholar
  23. 23.
    N. Park, I. Watanabe, D. Terada, Y. Yokoyama, P.K. Liaw, N. Tsuji, Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy. Metall. Mater. Trans. A 46(4), 1481–1487 (2015)CrossRefGoogle Scholar
  24. 24.
    Z.G. Zhu, K.H. Ma, X. Yang, C.H. Shek, Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100−x)Cox high entropy alloys. J. Alloys Compd. 695, 2945–2950 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Xian, Z.-H. Zhong, L.-J. Lin, Z.-X. Zhu, C. Chen, Y.-C. Wu, Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Met. 3, 1–7 (2018)Google Scholar
  26. 26.
    S.Y. Chen, Y. Tong, K.K. Tseng, J.W. Yeh, J.D. Poplawsky, J.G. Wen, M.C. Gao, G. Kim, W. Chen, Y. Ren, R. Feng, W.D. Li, P.K. Liaw, Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scr. Mater. 158, 50–56 (2019)CrossRefGoogle Scholar
  27. 27.
    P. Wilson, R. Field, M. Kaufman, The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co–Cr–Fe–Mn–Ni high entropy alloy system. Intermetallics 75, 15–24 (2016)CrossRefGoogle Scholar
  28. 28.
    K.-Y. Tsai, M.-H. Tsai, J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)CrossRefGoogle Scholar
  29. 29.
    G. Laplanche, S. Berglund, C. Reinhart, A. Kostka, F. Fox, E.P. George, Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Mater. 161, 338–351 (2018)CrossRefGoogle Scholar
  30. 30.
    F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Mater. 112, 40–52 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Shahmir, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A 676, 294–303 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Li, Y. Long, Y. Li, J.-W. Li, X. Xiong, P. Xiao, Microstructure and properties of needle punching chopped carbon fiber reinforced carbon and silicon carbide dual matrix composite. Ceram. Int. 42(8), 9527–9537 (2016)CrossRefGoogle Scholar
  33. 33.
    Q. He, Y. Yang, On lattice distortion in high entropy alloys. Front. Mater. 5, 42 (2018)CrossRefGoogle Scholar
  34. 34.
    Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh, S.-J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 509(5), 1607–1614 (2011)CrossRefGoogle Scholar
  35. 35.
    Q. Tang, Y. Huang, H. Cheng, X. Liao, T.G. Langdon, P. Dai, The effect of grain size on the annealing-induced phase transformation in an Al0·3CoCrFeNi high entropy alloy. Mater. Design 105, 381–385 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.National-Local Joint Engineering Research Center of Nonferrous, Metals and Processing TechnologyHefei University of TechnologyHefeiChina
  3. 3.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA

Personalised recommendations