Effect of Cu Contents on Nanocluster Formation and Two-Step Aging Behavior in Al–Mg–Si Alloys

  • MinYoung Song
  • InSu Kim
  • JaeHwang KimEmail author
  • SungGil HongEmail author


The effect of Cu contents on nanocluster formation and the two-step aging behavior of Al–Mg–Si alloys was studied based on hardness, DSC and TEM results. The activation energies for the formation of Cluster (1) were 61.6, 70.3 and 92.9 kJ/mol for Cu-free, 1Cu (0.1 mass% Cu-added) and 3Cu (0.3 mass% Cu-added), respectively. It was confirmed that hardness increased slowly with increasing Cu content during natural aging for 3.6 ks. These results suggest that the formation kinetics of Cluster (1) decrease due to the vacancy trapping phenomenon, because of the strong interactions of the Cu-vacancies. Meanwhile, the effect of the formation of nanoclusters by Cu addition on the two-step aging behavior at 170 °C during natural aging was analyzed. Hardness at the initial stage of the two-step aging increased with increasing Cu contents. This was caused by the suppression of Cluster (1) formation during natural aging by the Cu additions. Based on TEM results, at the peak hardness of the two-step aging, the number density of precipitates was increased by increasing Cu contents, due to the suppression of nanocluster formation during natural aging.

Graphic Abstract

Nanocluster formation behavior by DSC, two-step aging behavior based on hardness results and precipitation observation at the peak hardness using TEM. Two types of nanoclusters were analyzed using DSC based on Gaussian function method in Al–Mg–Si alloys. The formation of nanoclusters is suppressed during natural aging by Cu additions. Also, the hardness is clearly increased by Cu addition at the initial stage of two-step aging at 170 °C after natural aging for 3.6 ks. Based on TEM results, the number density of precipitates was increased by increasing Cu contents at the peak hardness of the two-step aging due to the suppression of nanocluster formation during natural aging.


Al–Mg–Si alloys Age-hardening Precipitates Two-step aging Cu addition 



This work was supported by the Development of hot/warm forming-heat treatment integrated process for high strength aluminum alloy (PEO19422) of the Korea Institute of Industrial Technology. The authors are grateful to UACJ Corp. for the material supply.


  1. 1.
    J. Hirsch, Trans. Nonferrous Metals Soc. China 24, 1995 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Banhart, Int. J. Veh. Design 37, 114 (2005)CrossRefGoogle Scholar
  3. 3.
    G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater. 46, 3893 (1998)CrossRefGoogle Scholar
  4. 4.
    K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, J. Mater. Sci. 35, 179 (2000)CrossRefGoogle Scholar
  5. 5.
    C.D. Marioara, S.J. Andersen, H.W. Zandbergen, R. Holmestad, Metall. Mater. Trans. A 36A, 691 (2005)Google Scholar
  6. 6.
    C.D. Marioara, H. Nordmark, S.J. Andersen, R. Holmestad, J. Mater. Sci. 41, 471 (2006)CrossRefGoogle Scholar
  7. 7.
    A. Serizawa, S. Hirosawa, T. Sato, Mater. Sci. Forum 519–521, 245 (2006)CrossRefGoogle Scholar
  8. 8.
    J. Im, J. Jeon, M. Song, S. Hong, J. Kim, Metals Mater. Int. 25, 860 (2019)CrossRefGoogle Scholar
  9. 9.
    E. Kwon, K. Woo, S. Kim, D. Kang, K. Lee, J. Jeon, Metals Mater. Int. 16, 701 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Man, L. Jing, S.G. Jie, J. Alloys Compd. 437, 146 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Ding, Z. Jia, Z. Zhang, R.E. Sanders, Q. Liu, G. Yang, Mater. Sci. Eng. A 627, 119 (2015)CrossRefGoogle Scholar
  12. 12.
    C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, R. Holmestad, Philos. Magazine 87, 3385 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Cayron, L. Sagalowicz, O. Beffort, P.A. Buffat, Philos. Magazine A 79, 2833 (1999)CrossRefGoogle Scholar
  14. 14.
    K. Matsuda, Y. Uetani, T. Sato, S. Ikeno, Metall. Mater. Trans. A 32, 1293 (2001)CrossRefGoogle Scholar
  15. 15.
    W.F. Miao, D.E. Laughlin, Scr. Mater. 40, 873 (1999)CrossRefGoogle Scholar
  16. 16.
    S.D. Dumolt, D.E. Laughlin, J.C. Williams, Scr. Metall. 18, 1347 (1984)CrossRefGoogle Scholar
  17. 17.
    A. Gaber, A.M. Ali, K. Matsuda, T. Kawabata, T. Yamazaki, S. Ikeno, J. Alloys Compd. 432, 149 (2007)CrossRefGoogle Scholar
  18. 18.
    A. Gaber, M.A. Gaffar, M.S. Mostafa, E.F. Abo Zeid, J. Alloys Compd. 429, 167 (2007)CrossRefGoogle Scholar
  19. 19.
    J. Kim, C.D. Marioara, R. Holmestad, E. Kobayashi, T. Sato, Mater. Sci. Eng. A 560, 154 (2013)CrossRefGoogle Scholar
  20. 20.
    J. Kim, S. Kim, E. Kobayashi, T. Sato, Mater. Trans. 55, 768 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Matsuda, T. Naoi, K. Fujii, Y. Uetani, T. Sato, A. Kamio, Mater. Sci. Eng. A 262, 232 (1999)CrossRefGoogle Scholar
  22. 22.
    Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, Mater. Sci. Eng. A 631, 86 (2015)CrossRefGoogle Scholar
  23. 23.
    A.K. Gupta, D.J. Lloyd, Metall. Mater. Trans. A 30A, 879 (1999)CrossRefGoogle Scholar
  24. 24.
    L. Cao, P.A. Rometsch, M.J. Couper, Mater. Sci. Eng. A 559, 257 (2013)CrossRefGoogle Scholar
  25. 25.
    R.K.W. Marceau, A. de Vaucorbeil, G. Sha, S.P. Ringer, W.J. Poole, Acta Mater. 61, 7285 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Özbilen, H.M. Flower, Acta Metall. 37, 2993 (1989)CrossRefGoogle Scholar
  27. 27.
    A. Serizawa, S. Hirosawa, T. Sato, Metall. Mater. Trans. A 39A, 243 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F.Y. Xie, Mater. Sci. Eng. A 363, 140 (2003)CrossRefGoogle Scholar
  29. 29.
    H. Kimura, R.R. Hasiguti, Acta Metall. 9, 1076 (1961)CrossRefGoogle Scholar
  30. 30.
    S. Pogatscher, M. Werinos, H. Antrekowitsch, P.J. Uggowitzer, Mater. Sci. Forum 794–796, 1008 (2014)CrossRefGoogle Scholar
  31. 31.
    C. Wolverton, Acta Mater. 55, 5867 (2007)CrossRefGoogle Scholar
  32. 32.
    O. Melikhova, J. Kuriplach, J. Čížek, I. Procházka, Appl. Surf. Sci. 252, 3285 (2006)CrossRefGoogle Scholar
  33. 33.
    P. Lang, Y.V. Shan, E. Kozeschnik, Mater. Sci. Forum 794–796, 963 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Lang, T. Weisz, M.R. Ahmadi, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik, Adv. Mater. Res. 922, 406 (2014)CrossRefGoogle Scholar
  35. 35.
    D.W. Pashley, M.H. Jacobs, J.T. Vietz, Philos. Magazine 16, 51 (1967)CrossRefGoogle Scholar
  36. 36.
    K. Yamada, T. Sato, A. Kamio, Mater. Sci. Forum 331–337, 669 (2000)CrossRefGoogle Scholar
  37. 37.
    J. Kim, E. Kobayashi, T. Sato, Mater. Trans. 56, 1771 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, P.J. Uggowitzer, Acta Mater. 59, 3352 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Carbon and Light Materials Application R&D GroupKorea Institute of Industrial Technology (KITECH)JeonjuRepublic of Korea
  2. 2.Department of Materials Science and EngineeringChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations