Metallurgical Assessment of Novel Mg–Sn–La Alloys Produced by High-Pressure Die Casting

  • Azim GökçeEmail author


Mg alloys containing Al are widely used for industrial applications, but the use of these alloys as an automotive part is limited due to the low melting temperature of the Mg17Al12 intermetallic phase. Therefore, magnesium alloys without aluminum that can withstand higher operating temperatures are of interest to the automotive industry. The objective of this work is to develop Al-free Mg alloys for industrial applications. In the current work, four types of alloys were produced with varying La contents. The high-pressure die casting method was selected to overcome the problems inherent in the gravity casting method with respect to the production of parts with complex shapes and thin walls. X-ray diffraction analysis revealed that the base alloy (Mg–5Sn wt%) comprises of α-Mg and Mg2Sn phases whereas La containing alloys included intermetallic phases such as LaMg3, Mg17La2, and La5Sn3. Corresponding grain sizes of the alloys with La are lower than those of the Mg5Sn alloy. Due to this lower grain size and emerging dispersoids, the tensile strength of the Mg5Sn4La alloy (205 MPa) is roughly double that of Mg5Sn. Moreover, the addition of the 4% wt. La to the Mg5Sn alloys led to an increase in yield strength and ductility by 25% and 50%, respectively.

Graphical Abstract


Magnesium Microscopy High-pressure die casting Light alloys Mechanical properties 



This work was supported by the Sakarya University Scientific Research Project Council under Grant [number 2017-09-08-014]. The author also would like to acknowledge funding assistance provided by the Turkish National Scientific Council (Tubitak) via 2219 - International Postdoctoral Research Fellowship Program Grant no 1059B191800747. The help of İpek GÖKÇE, Murat GÖKÇE, Paramjot SINGH and Arulselvan ARUMUGHAM AKILAN in the experimental work are gratefully acknowledged.


  1. 1.
    H.E. Friedrich, B.L. Mordike, editors, in (Springer, Berlin, 2006), pp. 499–632Google Scholar
  2. 2.
    F. Bonollo, N. Gramegna, G. Timelli, JOM 67, 901 (2015)CrossRefGoogle Scholar
  3. 3.
    H.I. Laukli, High Pressure Die Casting of Aluminium and Magnesium Alloys—Grain Structure and Segregation Characteristics, Norwegian University of Science and Technology, 2004Google Scholar
  4. 4.
    I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloy, 5th edn. (Elsevier, Boston, 2017), pp. 1–29CrossRefGoogle Scholar
  5. 5.
    B.L. Mordike, T. Ebert, Mater. Sci. Eng. A 302, 37 (2001)CrossRefGoogle Scholar
  6. 6.
    V.V. Ramalingam, P. Ramasamy, M. Das Kovukkal, G. Myilsamy, Met. Mater. Int. (2019)Google Scholar
  7. 7.
    L.-Y. Chen, J.-Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J.-M. Yang, S. Mathaudhu, X.-C. Li, Nature 528, 539 (2015)CrossRefGoogle Scholar
  8. 8.
    EEA, EEA Report No 27/2016 Monitoring CO2 Emissions from New Passenger Cars and Vans in 2016 (2016)Google Scholar
  9. 9.
    Ç. Özay, E.B. Gencer, A. Gökçe, J. Therm. Anal. Calorim. 134, 23 (2018)CrossRefGoogle Scholar
  10. 10.
    A. Gökçe, F. Findik, A.O. Kurt, Mater. Charact. 62, 730 (2011)CrossRefGoogle Scholar
  11. 11.
    H.W. Shin, Int. J. Precis. Eng. Manuf. 13, 2011 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, J. Alloys Compd. 440, 122 (2007)CrossRefGoogle Scholar
  13. 13.
    W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013)CrossRefGoogle Scholar
  14. 14.
    M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39, 851 (2008)CrossRefGoogle Scholar
  15. 15.
    A. Luo, M.O. Pekguleryuz, J. Mater. Sci. 29, 5259 (1999)CrossRefGoogle Scholar
  16. 16.
    H. Baker, M.M. Avedesian (eds.), ASM Specialty Handbook: Magnesium and Magnesium Alloys (ASM International, Cleveland, 1999)Google Scholar
  17. 17.
    I.J. Polmear, Mater. Trans., JIM 37, 12 (1996)CrossRefGoogle Scholar
  18. 18.
    Y. Lü, Q. Wang, W. Ding, X. Zeng, Y. Zhu, Mater. Lett. 44, 265 (2000)CrossRefGoogle Scholar
  19. 19.
    T.B. Abbott, M.A. Easton, C.H. Caceres, in Handbook of Mechanical Alloy Design, ed. by G.E. Totten, L. Xie, K. Funatani (CRC Press, Boca Raton, 2004), pp. 487–538Google Scholar
  20. 20.
    C.L. Mendis, C.J. Bettles, M.A. Gibson, C.R. Hutchinson, Mater. Sci. Eng., A 435–436, 163 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Tekumalla, S. Seetharaman, A. Almajid, M. Gupta, Metals (Basel). 5, 1 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K.U. Kainer, F. Feyerabend, Acta Biomater. 6, 1714 (2010)CrossRefGoogle Scholar
  23. 23.
    S.M. Zhu, M.A. Gibson, M.A. Easton, J.F. Nie, Scr. Mater. 63, 698 (2010)CrossRefGoogle Scholar
  24. 24.
    N. Birbilis, M.A. Easton, A.D. Sudholz, S.M. Zhu, M.A. Gibson, Corros. Sci. 51, 683 (2009)CrossRefGoogle Scholar
  25. 25.
    S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, G.L. Dunlop, Metall. Mater. Trans. A 40, 2036 (2009)CrossRefGoogle Scholar
  26. 26.
    T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics 17, 481 (2009)CrossRefGoogle Scholar
  27. 27.
    S. Zhu, M.A. Easton, T.B. Abbott, J.F. Nie, M.S. Dargusch, N. Hort, M.A. Gibson, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 46, 3543 (2015)CrossRefGoogle Scholar
  28. 28.
    I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Scr. Mater. 45, 1423 (2001)CrossRefGoogle Scholar
  29. 29.
    I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison, T.M. Pollock, Scr. Mater. 48, 1029 (2003)CrossRefGoogle Scholar
  30. 30.
    H. Da Zhao, G.W. Qin, Y.P. Ren, W.L. Pei, D. Chen, Y. Guo, Trans. Nonferrous Met. Soc. China 20, s493 (2010)CrossRefGoogle Scholar
  31. 31.
    Q. Wang, Y. Shen, B. Jiang, A. Tang, J. Song, Z. Jiang, T. Yang, G. Huang, F. Pan, Mater. Sci. Eng. A 735, 131 (2018)CrossRefGoogle Scholar
  32. 32.
    W. Ding, Y. Chen, S. Xiao, Z. Cui, P. Cheng, J. Rare Earths 35, 585 (2017)CrossRefGoogle Scholar
  33. 33.
    G. Yarkadaş, L.C. Kumruoğlu, H. Şevik, Mater. Charact. 136, 152 (2018)CrossRefGoogle Scholar
  34. 34.
    Z.H. Huang, W.H. Liu, W.J. Qi, J. Xu, J. Mater. Eng. 44, 56 (2016)Google Scholar
  35. 35.
    J. Luo, R.S. Chen, E.H. Han, Mater. Sci. Forum 747–748, 245 (2013)CrossRefGoogle Scholar
  36. 36.
    J. Jiang, G. Bi, J. Liu, C.C. Ye, J. Lian, Z. Jiang, J. Magn. Alloys 2, 257 (2014)CrossRefGoogle Scholar
  37. 37.
    H. Okamoto, J. Phase Equilib. 23, 289 (2002)CrossRefGoogle Scholar
  38. 38.
    A. Bowles, K. Nogita, M. Dargusch, C. Davidson, J. Griffiths, Mater. Trans. 45, 3114 (2004)CrossRefGoogle Scholar
  39. 39.
    G.E. Lloyd, Miner. Mag. 51, 3 (1987)CrossRefGoogle Scholar
  40. 40.
    M. Mezbahul-Islam, A.O. Mostafa, M. Medraj, J. Mater. 2014, 1 (2014)CrossRefGoogle Scholar
  41. 41.
    M. Cong, Z. Li, J. Liu, X. Miao, B. Wang, Q. Xi, Russ. J. Non-Ferrous Met. 57, 445 (2016)CrossRefGoogle Scholar
  42. 42.
    A. Berche, P. Benigni, J. Rogez, M.-C. Record, J. Therm. Anal. Calorim. 107, 797 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Wei, Y. Chen, Y. Tang, X. Zhang, M. Liu, S. Xiao, Y. Zhao, Mater. Sci. Eng. A 508, 59 (2009)CrossRefGoogle Scholar
  44. 44.
    Z. Zhao, P. Bai, R. Guan, V. Murugadoss, H. Liu, X. Wang, Z. Guo, Mater. Sci. Eng. A 734, 200 (2018)CrossRefGoogle Scholar
  45. 45.
    C.O. Muga, Z.W. Zhang, Adv. Mater. Sci. Eng. 2016, 1 (2016)CrossRefGoogle Scholar
  46. 46.
    R.G. Guan, Y.F. Shen, Z.Y. Zhao, R.D.K. Misra, Sci. Rep. 6, 1 (2016)CrossRefGoogle Scholar
  47. 47.
    G.E. Dieter, D.J. Bacon, Mechanical Metallurgy (McGraw-Hill, New York, 1986)Google Scholar
  48. 48.
    E. Hornbogen, J. Light Met. 1, 127 (2001)CrossRefGoogle Scholar
  49. 49.
    H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, Mater. Sci. Eng. A 464, 124 (2007)CrossRefGoogle Scholar
  50. 50.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Phys. Rev. B 74, 2 (2006)CrossRefGoogle Scholar
  51. 51.
    C.L. Mendis, C.J. Bettles, M.A. Gibson, S. Gorsse, C.R. Hutchinson, Philos. Mag. Lett. 86, 443 (2006)CrossRefGoogle Scholar
  52. 52.
    E. Franceschi, J. Less-Common Met. 66, 175 (1979)CrossRefGoogle Scholar
  53. 53.
    M. Wang, R. Pan, P. Li, N. Bian, B. Tang, L. Peng, W. Ding, J. Cent, S. Univ. 21, 2136 (2014)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Materials Innovation Guild, Mechanical Engineering Department, Speed School of EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Metallurgy and Materials Engineering Department, Technology FacultySakarya University of Applied SciencesSakaryaTurkey

Personalised recommendations