Advertisement

Recent Advances in Active Metal Brazing of Ceramics and Process

  • S. Mishra
  • A. Sharma
  • D. H. Jung
  • J. P. JungEmail author
Article
  • 23 Downloads

Abstract

Ceramic to metal joining has its potential applications in microelectronics packaging, metal–ceramic seals, vacuum tubes, sapphire metal windows, etc. But there are many limitations in joining this duo of materials that range from their structures, nature of bonding, physical properties to a complex phenomenon like wetting, spreading and adhesion. The current review discusses these critical issues from the aspects of thermodynamics, the role, and type of active elements, Ag–Cu–Ti brazing filler system and the reliability factors like residual stress, coefficient of thermal expansion, material reliability, pores and unbonded regions on the surface which affect the mechanical reliability of the joint.

Graphic Abstract

Keywords

Ceramic Metal Active metal brazing Wetting Reliability 

Notes

Acknowledgements

This work was supported by the Technology development program (S2517123) funded by the Ministry of SME’s and Startups (MSS, Korea) and also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172020109280).

References

  1. 1.
    R.W. Davidge, Contemp. Phys. 10, 105 (1969)CrossRefGoogle Scholar
  2. 2.
    K.J. Kurzydłowski, Acta Phys. Pol., A 96, 69 (1999)CrossRefGoogle Scholar
  3. 3.
    W. Fu, X.G. Song, S.P. Hu, J.H. Chai, J.C. Feng, G.D. Wang, Mater. Des. 87, 579 (2015)CrossRefGoogle Scholar
  4. 4.
    R.W. Messler Jr., Joining and Materials and Structures, 1st edn. (Butterworth- Heinemann, New York, 2004)Google Scholar
  5. 5.
    A.M. Hadian, Joining of Silicon Nitride-to-Silicon Nitride and to Molybdenum for High-Temperature Applications, Ph.D. thesis (McGill University, Montreal, Canada, 1993)Google Scholar
  6. 6.
    S.H. Kee, Z. Xu, J.P. Jung, W. Kim, J. Microelectron. Packag. Soc. 18, 1 (2011)Google Scholar
  7. 7.
    A. Sharma, S.H. Lee, H.O. Ban, Y.S. Shin, J.P. Jung, JWJ 34, 30 (2016)Google Scholar
  8. 8.
    J. Shin, A. Sharma, D.H. Jung, J.P. Jung, Kor. J. Met. Mater. 56, 366 (2018)CrossRefGoogle Scholar
  9. 9.
    F. Moret, N. Eustathopoulos, Le Journal de Physique IV03(C 7), 1043 (1993)Google Scholar
  10. 10.
    A. Sharma, S.H. Kee, F. Jung, Y. Heo, J.P. Jung, J. Mater. Eng. Perform. 25(5), 1722 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. David, Annu. Rev. Mater. Res. 38, 71 (2008)CrossRefGoogle Scholar
  12. 12.
    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)CrossRefGoogle Scholar
  13. 13.
    E. Thormann, Curr. Opin. Colloid Interface Sci. 27, 18 (2017)CrossRefGoogle Scholar
  14. 14.
    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)CrossRefGoogle Scholar
  15. 15.
    C.G.L. Furmidge, J. Colloid Sci. 17, 309 (1962)CrossRefGoogle Scholar
  16. 16.
    Y. Si, Z. Guo, Nanoscale 7, 5922 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Adamson, A. Gast, Physical Chemistry of Surfaces, 6th edn. (Wiley-Interscience, New York, 1997)Google Scholar
  18. 18.
    P.G.D. Gennes, F.B. Wyart, D. Quéré, Capillarity and Wetting Phenomena, 1st edn. (Springer-Verlag, New York, 2013)Google Scholar
  19. 19.
    P.R. Chidambaram, G.R. Edwards, D.L. Olson, Metall. Mater. Trans. A 25, 2083 (1994)CrossRefGoogle Scholar
  20. 20.
    P.R. Chidambaram, G.R. Edwards, D.L. Olson, Metall. Trans. B 23, 215 (1992)CrossRefGoogle Scholar
  21. 21.
    A. Sharma, M.H. Roh, D.H. Jung, J.P. Jung, Metall. Mater. Trans. A 47A, 510 (2016)CrossRefGoogle Scholar
  22. 22.
    A. Sharma, D.U. Lim, J.P. Jung, Mater. Sci. Technol. 32(8), 773 (2016)Google Scholar
  23. 23.
    A. Sharma, M.H. Roh, J.P. Jung, J. Mater. Eng. Perform. 25(8), 3538 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Sharma, X. Di, J.P. Jung, Mater. Res. Exp. 6(5), 056526 (2019)CrossRefGoogle Scholar
  25. 25.
    A. Sharma, B.G. Baek, J.P. Jung, Mater. Des. 87, 370 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Sharma, H. Yu, I.S. Cho, H. Seo, B. Ahn, Electron. Mater. Lett. 15, 27 (2019)CrossRefGoogle Scholar
  27. 27.
    A. Sharma, A.K. Srivastava, K. Lee, B. Ahn, Met. Mater. Int. 25, 1027 (2019)CrossRefGoogle Scholar
  28. 28.
    A. Sharma, A.K. Srivastava, B. Ahn, Mater. Res. Exp. 6, 056520 (2019)CrossRefGoogle Scholar
  29. 29.
    A. Sharma, H.R. Sohn, J.P. Jung, Metall. Mater. Trans. A 47(1), 494 (2016)CrossRefGoogle Scholar
  30. 30.
    N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at High Temperatures, 1st edn. (Pergamon, Oxford, 1999)Google Scholar
  31. 31.
    R. Arroyave, Thermodynamics and Kinetics of Ceramic/Metal Interfacial Interactions (Ph.D. Thesis, MIT, USA, 2004)Google Scholar
  32. 32.
    J.W. Park, P.F. Mendez, T.W. Eagar, Acta Mater. 50, 883 (2002)CrossRefGoogle Scholar
  33. 33.
    J.A. Fernie, R.A.L. Drew, K.M. Knowles, Int. Mater. Rev. 54, 283 (2009)CrossRefGoogle Scholar
  34. 34.
    S.H. Kee, S.Y. Park, Y.K. Huh, J.P. Jung, W.J. Kim, J. Kor. Acad. Prosthodont. 50(3), 169 (2012)CrossRefGoogle Scholar
  35. 35.
    Y.V. Naidich, V.S. Zhuravlev, I.I. Gab, B.D. Kostyuk, V.P. Krasovskyy, A.A. Adamovskyy, NYu. Taranets, J. Eur. Ceram. Soc. 28, 717 (2008)CrossRefGoogle Scholar
  36. 36.
    O. Dezellus, R. Arroyave, S.G. Fries, Int. J. Mater. Res. 102, 286 (2011)CrossRefGoogle Scholar
  37. 37.
    R.E. Loehman, A.P. Tomsia, Acta Metall. Mater. 40, S75 (1992)CrossRefGoogle Scholar
  38. 38.
    R. Voytovych, F. Robaut, N. Eustathopoulos, Acta Mater. 54, 2205 (2006)CrossRefGoogle Scholar
  39. 39.
    N.Y. Taranets, H. Jones, Mater. Sci. Eng., A 379, 251 (2004)CrossRefGoogle Scholar
  40. 40.
    V.N. Eremenko, Y.I. Buyanov, N.M. Panchenko, Sov. Powder Metall. Met. Ceram. 9, 410 (1970)Google Scholar
  41. 41.
    V.N. Eremenko, Y.I. Buyanov, N.M. Panchenko, Sov. Powder Metall. Met. Ceram. 9, 310 (1970)Google Scholar
  42. 42.
    V.N. Eremenko, Y.I. Buyanov, N.M. Panchenko, Izvestiya AkademiiNauk SSSR, Metally 3, 188 (1969)Google Scholar
  43. 43.
    Y. Chang, D. Goldberg, J. Neumann, J. Phys. Chem. 6, 621 (1977)Google Scholar
  44. 44.
    O. Kubaschewski, J. De Keyzer, R. Schmid-Fetzer, O. Shcherban, V. Tomashik, Y. Jialin, L. Tretyachenko, Silver-Copper-Titanium, vol. 11 (Springer, Berlin, 2007), pp. 63–74Google Scholar
  45. 45.
    K.T. Raić, Ceram. Int. 26, 19 (2000)CrossRefGoogle Scholar
  46. 46.
    G. Elssner, G. Petzow, ISIJ Int. 30, 1011 (1990)CrossRefGoogle Scholar
  47. 47.
    S. Somiya, Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties, 2nd edn. (Academic Press, Cambridge, 2013)Google Scholar
  48. 48.
    J. Lemus-Ruiz, L. Ceja-Cárdenas, J.A. Verduzco, O. Flores, J. Mater. Sci. 43, 6296 (2008)CrossRefGoogle Scholar
  49. 49.
    K. Suganuma, ISIJ Int. 30, 1046 (1990)CrossRefGoogle Scholar
  50. 50.
    K.A. Khor, M. Wang, W. Zhou, F. Boey, T.S. Srivatsan, Processing and Fabrication of Advanced Materials VIII (World Scientific, Singapore, 2001)CrossRefGoogle Scholar
  51. 51.
    R. Anderson, Adv. Mater. Processes 135, 31 (1989)Google Scholar
  52. 52.
    H. Mizuhara, E. Huebel, O.T. Oyama, Am. Ceram. Soc. Bull. 68, 1591 (1989)Google Scholar
  53. 53.
    J. Olofsson, Friction and Wear Mechanisms of Ceramic Surfaces: With Applications to Micro Motors and Hip Joint Replacements (Ph.D. thesis, Uppsala University, Sweden, 2011)Google Scholar
  54. 54.
    B. Çelik B, Thermally Induced Distortion and Residual Stresses in Welded Joints (M.S. thesis, Cukurova University, Turkey, 2009)Google Scholar
  55. 55.
    Y. Zhou, Microjoining and Nanojoining, 1st edn. (Elsevier, Amsterdam, 2008)CrossRefGoogle Scholar
  56. 56.
    M.B. Uday, M.N. Ahmad Fauzi, H. Zuhailawati, A.B. Ismail, Mater. Sci. Eng., A 528, 4753 (2011)CrossRefGoogle Scholar
  57. 57.
    A. Bellosi, T. Kosmac, A.P. Tomsia, Interfacial Science in Ceramic Joining, Series: Nato Science Partnership Subseries: 3, vol. 58 (Springer, Berlin, 1998)Google Scholar
  58. 58.
    A.M. Hadian, Joining of Silicon Nitride to Silicon Nitride and to Molybdenum for High Temperature Applications (Ph.D. thesis, McGill University, Montreal, Canada, 1993)Google Scholar
  59. 59.
    R.J. Lemus, Diffusion Bonding of Silicon Nitride to Titanium (Ph.D. thesis, McGill University, Montréal, Canada, 2000)CrossRefGoogle Scholar
  60. 60.
    J.W. Park, A Framework for Designing Interlayers for Ceramic to Metal Joints (Ph.D. thesis, Massachusetts Institute of Technology, USA, 2000)Google Scholar
  61. 61.
    W. Wunderlich, Metals 4, 410 (2014)CrossRefGoogle Scholar
  62. 62.
    R.M.D. Nascimento, A.E. Martinelli, A.J.A. Buschinelli, Ceramica 49, 178 (2003)CrossRefGoogle Scholar
  63. 63.
    M.R. Abbas, M.B. Uday, A.M. Noor, N. Ahmad, Srithar Rajoo. Mater. Des. 109, 47 (2016)CrossRefGoogle Scholar
  64. 64.
    K. Suganuma, Reliability Factors in Ceramic/Metal Joining, National Defense Academy Yokosuka, Japan (1993)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  • S. Mishra
    • 1
  • A. Sharma
    • 2
  • D. H. Jung
    • 1
  • J. P. Jung
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of SeoulSeoulRepublic of Korea
  2. 2.Department of Materials Science and Engineering and Department of Energy Systems ResearchAjou UniversitySuwonRepublic of Korea

Personalised recommendations