Advertisement

Microstructure Characterization and Properties of Ti Carbohydride/Cu–Ti/GNP Nanocomposites Prepared by Wet Ball Milling and Subsequent Magnetic Pulsed Compaction

  • M. A. EryominaEmail author
  • S. F. Lomayeva
  • V. V. Tarasov
  • S. N. Paranin
  • I. L. Lomaev
  • K. G. Mikheev
  • S. L. Demakov
Article
  • 26 Downloads

Abstract

Wide application of hard composite materials in modern technologies stimulates a search for new compositions and more efficient and cheaper ways of their obtaining. A novel Ti carbohydride/CuTi/CuTi2/GNP (few-layer graphene or graphite nanoplatelets) composites were produced via magnetic pulsed compaction of Ti, Cu and graphite powders mechanically milled in liquid organic medium for 4 h. Phase composition and microstructure were examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Density, microhardness, ultimate compression strength, abrasive wear resistance and sliding wear resistance of the composites were studied. The composites consisted of hexagonal and cubic titanium carbohydrides, CuTi2 and CuTi intermetallics, ~ 5 wt% of GNP and amorphous carbon. The presence of GNP and amorphous carbon resulted in higher wear resistance under conditions of dry friction against steel (1 wt%C, 1.5 wt%Cr) but lower composite density, microhardness, ultimate compression strength and abrasion wear resistance as compared with the GNP-free composites.

Graphic Abstract

Keywords

Titanium carbohydride composites GNP Ball milling Microstructure Wear Microhardness 

Notes

Acknowledgement

The present study was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation, Reg. Nos. AAAA-A17-117022250038-7 and No. AAAA-A18-118020190104-3, and partially supported by the Russian Foundation for Basic Research according to the research Project No. 18-48-180003. This study was performed using equipment of the Shared Use Centres UdmFRC UB RAS and UrFU.

Compliance with Ethical Standard

Conflict of interest

:The authors declare that they have no conflict of interests.

References

  1. 1.
    M. Nagumo, T. Suzuki, K. Tsuchida, Mater. Sci. Forum (1996).  https://doi.org/10.4028/www.scientific.net/MSF.225-227.581 CrossRefGoogle Scholar
  2. 2.
    M.A. Eryomina, S.F. Lomayeva, S.N. Paranin, S.V. Zayatz, V.V. Tarasov, I.S. Trifonov, Lett. Mater. (2017).  https://doi.org/10.22226/2410-3535-2017-3-323-326 CrossRefGoogle Scholar
  3. 3.
    M.A. Eremina, S.F. Lomaeva, I.N. Burnyshev, D.G. Kalyuzhnyi, Russ. Phys. J. (2018).  https://doi.org/10.1007/s11182-018-1340-7 CrossRefGoogle Scholar
  4. 4.
    M.C.M. Dias, N. Shohoji, Mater. Chem. Phys. (1995).  https://doi.org/10.1016/0254-0584(94)01429-K CrossRefGoogle Scholar
  5. 5.
    M.A. Eryomina, S.F. Lomayeva, S.L. Demakov, A.S. Yurovskikh, SPS of “Titanium Carbide/Carbohydride–Copper” Composites//in XIX International scientific-technical conference “The Ural school-seminar of metal scientists-young researchers”. KnE Eng. (2019).  https://doi.org/10.18502/keg.v1i1.4416 CrossRefGoogle Scholar
  6. 6.
    K. Ueno, S. Sodeoka, M. Yano, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97(5), 507 (1989)CrossRefGoogle Scholar
  7. 7.
    T. Ono, M. Ueki, M. Shimizu, Trans. Jpn. Soc. Mech. Eng. A (1993).  https://doi.org/10.1299/kikaia.59.1978 CrossRefGoogle Scholar
  8. 8.
    D. Cummings, Titanium carbide–graphite composites. Final report of research and development for the period of April 1, 1991 through September 31, 1991. Advanced Technology Materials, Inc. (Danbury, 1991) CT 06810Google Scholar
  9. 9.
    M. Ueki, Nippon steel technical report No. 59, 37 (1993)Google Scholar
  10. 10.
    T. Ono, H. Endo, M. Ueki, J. Mater. Eng. Perform. (1993).  https://doi.org/10.1007/BF02650054 CrossRefGoogle Scholar
  11. 11.
    W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, J. Mater. Chem. 20, 5817 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Miranzo, M. Belmonte, M.I. Osendi, J. Eur. Ceram. Soc. 37, 3649 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Cao, D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, D. Zhang, Carbon 117, 65 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Chu, F. Wang, X. Wang, Y. Li, Z. Geng, D. Huang, H. Zhang, Mater. Des. 144, 290 (2018)CrossRefGoogle Scholar
  15. 15.
    K. Chu, X. Wang, F. Wang, Y. Li, D. Huang, H. Liu, W. Ma, F. Liu, H. Zhang, Carbon 127, 102 (2018)CrossRefGoogle Scholar
  16. 16.
    K. Chu, X. Wang, F. Wang, Y. Li, D. Huang, Z. Geng, X. Zhao, H. Liu, H. Zhang, Mater. Des. 140, 85 (2018)CrossRefGoogle Scholar
  17. 17.
    K. Chu, J. Wang, Y. Li, Z. Geng, Carbon 140, 112 (2018)CrossRefGoogle Scholar
  18. 18.
    N. Sadeghi, H. Aghajani, M.R. Akbarpour, Ceram. Int. (2018).  https://doi.org/10.1016/j.ceramint.2018.08.316 CrossRefGoogle Scholar
  19. 19.
    G.S. Boltachev, K.A. Nagayev, S.N. Paranin, A.V. Spirin, N.B. Volkov, in Nanomaterials: Properties, Preparation and Processes, ed. by V. Cabral, R. Silva (Nova Science Publishers, Inc. 2011), pp. 1–58Google Scholar
  20. 20.
    V.V. Tarasov, S.Y. Lokhanina, A.V. Churkin, Zavod. Lab. Diagn. Mater. 76(4), 57 (2010). (in Russ.) Google Scholar
  21. 21.
    C. Politis, W.L. Johnson, J. Appl. Phys. (1986).  https://doi.org/10.1063/1.337359 CrossRefGoogle Scholar
  22. 22.
    E.I. Sokolova, N.A. Martirosyan, M.D. Nersesyan, Russ. J. Inorg. Chem. 26(7), 1949 (1981)Google Scholar
  23. 23.
    S.S. Simonyan, E.V. Agababyan, S.K. Dolukhanyan, S.S. Petrosyan, Inorg. Mater. 26(4), 762 (1990). (in Russ.) Google Scholar
  24. 24.
    G. Renaudin, K. Yvon, S.K. Dolukhanyan, N.N. Aghajanyan, VSh Shekhtman, J. Alloys Compd. (2003).  https://doi.org/10.1016/S0925-8388(03)00107-5 CrossRefGoogle Scholar
  25. 25.
    S.K. Dolukhanyan, N.N. Aghajanyan, NATO Science for Peace and Security Series, Series C: Environmental Security; 743-750; Carbon Nanomaterials in Clean Energy Hydrogen Systems, UCNCEHS, NATO Advanced Research Workshop, 2007 by Springer, Dordrecht, (2008)  https://doi.org/10.1007/978-1-4020-8898-8_93
  26. 26.
    T. Lin, J. Jiang, X.-F. Bian, Y. Dong, Trans. Nonferrous Met. Soc. China (2006).  https://doi.org/10.1016/S1003-6326(06)60106-4 CrossRefGoogle Scholar
  27. 27.
    A.I. Efimov, L.P. Belorukova, I.V. Vasil’kova, V.P. Chechev, Properties of Inorganic Phases: A handbook [in Russ.] (Khimiya, Leningrad, 1983)Google Scholar
  28. 28.
    C. Colinet, A. Pasturel, K.H.J. Buschow, J. Alloys Compd. (1997).  https://doi.org/10.1016/S0925-8388(96)02590-X CrossRefGoogle Scholar
  29. 29.
    W.E. Krull, R.W. Newman, J. Appl. Crystallogr. (1970).  https://doi.org/10.1107/S0021889870006787 CrossRefGoogle Scholar
  30. 30.
    K. Chu, F. Wang, Y. Li, X. Wang, D. Huang, H. Zhang, Carbon 133, 127 (2018)CrossRefGoogle Scholar
  31. 31.
    K. Chu, F. Wang, Y. Li, X. Wang, D. Huang, Z. Geng, Composites Part A 109, 267 (2018)CrossRefGoogle Scholar
  32. 32.
    K. Niwase, T. Tanaka, Y. Kakimoto, K.N. Ishihara, P.H. Shingu, Mater. Trans. 36(2), 282 (1995)CrossRefGoogle Scholar
  33. 33.
    J. Tang, W. Zhao, L. Li, A.U. Falster, W.B. Simmons Jr., W.L. Zhou, Y. Ikuhara, J.H. Zhang, J. Mater. Res. 11(3), 733 (1996)CrossRefGoogle Scholar
  34. 34.
    N. Sadeghi, M.R. Akbarpour, H. Aghajani, Mater. Sci. Eng. A 734, 164 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Tarnowski, K. Kulikowski, T. Borowski, B. Rajchel, T. Wierchoń, Diam. Relat. Mater. 75, 123 (2017)CrossRefGoogle Scholar
  36. 36.
    M. Kot, T. Moskalewicz, B. Wendler, A. Czyrska-Filemonowicz, W. Rakowski, Sol. St. Phenom. 177, 36 (2011)CrossRefGoogle Scholar
  37. 37.
    D. Martínez-Martínez, C. López-Cartes, A. Fernández, J.C. Sánchez-López, Thin Solid Films 517, 1662 (2009)CrossRefGoogle Scholar
  38. 38.
    J. Musil, P. Novák, R. Čerstvý, Z. Soukup, J. Vac. Sci. Technol. A 28(2), 244 (2010)CrossRefGoogle Scholar
  39. 39.
    D. Marchetto, P. Restuccia, A. Ballestrazzi, M.C. Righi, A. Rota, S. Valeri, Carbon 116, 375 (2017)CrossRefGoogle Scholar
  40. 40.
    S. Zhang, X.L. Bui, J. Jiang, X. Li, Surf. Coat. Technol. 198, 206 (2005)CrossRefGoogle Scholar
  41. 41.
    L. Bokobza, J.-L. Bruneel, M. Couzi, C. 1, 77 (2015).  https://doi.org/10.3390/c1010077 CrossRefGoogle Scholar
  42. 42.
    A. Ferrari, Sol. St. Commun. 143, 47 (2007)CrossRefGoogle Scholar
  43. 43.
    S. Osswald, M. Havel, Y. Gogotsi, J. Raman Spectrosc. 38, 728 (2007)CrossRefGoogle Scholar
  44. 44.
    N. Shimodaira, A. Masui, J. Appl. Phys. 92(2), 902 (2002)CrossRefGoogle Scholar
  45. 45.
    L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006)CrossRefGoogle Scholar
  46. 46.
    A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43, 1731 (2005)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Udmurt Federal Research Center, Ural BranchRussian Academy of SciencesIzhevskRussia
  2. 2.Institute of Electrophysics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  3. 3.M.N. Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  4. 4.Institute of New Materials and TechnologiesUral Federal UniversityEkaterinburgRussia

Personalised recommendations