Microstructure Characterization and Properties of Ti Carbohydride/Cu–Ti/GNP Nanocomposites Prepared by Wet Ball Milling and Subsequent Magnetic Pulsed Compaction
- 26 Downloads
Abstract
Wide application of hard composite materials in modern technologies stimulates a search for new compositions and more efficient and cheaper ways of their obtaining. A novel Ti carbohydride/CuTi/CuTi2/GNP (few-layer graphene or graphite nanoplatelets) composites were produced via magnetic pulsed compaction of Ti, Cu and graphite powders mechanically milled in liquid organic medium for 4 h. Phase composition and microstructure were examined by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Density, microhardness, ultimate compression strength, abrasive wear resistance and sliding wear resistance of the composites were studied. The composites consisted of hexagonal and cubic titanium carbohydrides, CuTi2 and CuTi intermetallics, ~ 5 wt% of GNP and amorphous carbon. The presence of GNP and amorphous carbon resulted in higher wear resistance under conditions of dry friction against steel (1 wt%C, 1.5 wt%Cr) but lower composite density, microhardness, ultimate compression strength and abrasion wear resistance as compared with the GNP-free composites.
Graphic Abstract
Keywords
Titanium carbohydride composites GNP Ball milling Microstructure Wear MicrohardnessNotes
Acknowledgement
The present study was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation, Reg. Nos. AAAA-A17-117022250038-7 and No. AAAA-A18-118020190104-3, and partially supported by the Russian Foundation for Basic Research according to the research Project No. 18-48-180003. This study was performed using equipment of the Shared Use Centres UdmFRC UB RAS and UrFU.
Compliance with Ethical Standard
Conflict of interest
:The authors declare that they have no conflict of interests.
References
- 1.M. Nagumo, T. Suzuki, K. Tsuchida, Mater. Sci. Forum (1996). https://doi.org/10.4028/www.scientific.net/MSF.225-227.581 CrossRefGoogle Scholar
- 2.M.A. Eryomina, S.F. Lomayeva, S.N. Paranin, S.V. Zayatz, V.V. Tarasov, I.S. Trifonov, Lett. Mater. (2017). https://doi.org/10.22226/2410-3535-2017-3-323-326 CrossRefGoogle Scholar
- 3.M.A. Eremina, S.F. Lomaeva, I.N. Burnyshev, D.G. Kalyuzhnyi, Russ. Phys. J. (2018). https://doi.org/10.1007/s11182-018-1340-7 CrossRefGoogle Scholar
- 4.M.C.M. Dias, N. Shohoji, Mater. Chem. Phys. (1995). https://doi.org/10.1016/0254-0584(94)01429-K CrossRefGoogle Scholar
- 5.M.A. Eryomina, S.F. Lomayeva, S.L. Demakov, A.S. Yurovskikh, SPS of “Titanium Carbide/Carbohydride–Copper” Composites//in XIX International scientific-technical conference “The Ural school-seminar of metal scientists-young researchers”. KnE Eng. (2019). https://doi.org/10.18502/keg.v1i1.4416 CrossRefGoogle Scholar
- 6.K. Ueno, S. Sodeoka, M. Yano, Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 97(5), 507 (1989)CrossRefGoogle Scholar
- 7.T. Ono, M. Ueki, M. Shimizu, Trans. Jpn. Soc. Mech. Eng. A (1993). https://doi.org/10.1299/kikaia.59.1978 CrossRefGoogle Scholar
- 8.D. Cummings, Titanium carbide–graphite composites. Final report of research and development for the period of April 1, 1991 through September 31, 1991. Advanced Technology Materials, Inc. (Danbury, 1991) CT 06810Google Scholar
- 9.M. Ueki, Nippon steel technical report No. 59, 37 (1993)Google Scholar
- 10.T. Ono, H. Endo, M. Ueki, J. Mater. Eng. Perform. (1993). https://doi.org/10.1007/BF02650054 CrossRefGoogle Scholar
- 11.W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, G. Chen, J. Mater. Chem. 20, 5817 (2010)CrossRefGoogle Scholar
- 12.P. Miranzo, M. Belmonte, M.I. Osendi, J. Eur. Ceram. Soc. 37, 3649 (2017)CrossRefGoogle Scholar
- 13.M. Cao, D.-B. Xiong, Z. Tan, G. Ji, B. Amin-Ahmadi, Q. Guo, G. Fan, C. Guo, Z. Li, D. Zhang, Carbon 117, 65 (2017)CrossRefGoogle Scholar
- 14.K. Chu, F. Wang, X. Wang, Y. Li, Z. Geng, D. Huang, H. Zhang, Mater. Des. 144, 290 (2018)CrossRefGoogle Scholar
- 15.K. Chu, X. Wang, F. Wang, Y. Li, D. Huang, H. Liu, W. Ma, F. Liu, H. Zhang, Carbon 127, 102 (2018)CrossRefGoogle Scholar
- 16.K. Chu, X. Wang, F. Wang, Y. Li, D. Huang, Z. Geng, X. Zhao, H. Liu, H. Zhang, Mater. Des. 140, 85 (2018)CrossRefGoogle Scholar
- 17.K. Chu, J. Wang, Y. Li, Z. Geng, Carbon 140, 112 (2018)CrossRefGoogle Scholar
- 18.N. Sadeghi, H. Aghajani, M.R. Akbarpour, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.316 CrossRefGoogle Scholar
- 19.G.S. Boltachev, K.A. Nagayev, S.N. Paranin, A.V. Spirin, N.B. Volkov, in Nanomaterials: Properties, Preparation and Processes, ed. by V. Cabral, R. Silva (Nova Science Publishers, Inc. 2011), pp. 1–58Google Scholar
- 20.V.V. Tarasov, S.Y. Lokhanina, A.V. Churkin, Zavod. Lab. Diagn. Mater. 76(4), 57 (2010). (in Russ.) Google Scholar
- 21.C. Politis, W.L. Johnson, J. Appl. Phys. (1986). https://doi.org/10.1063/1.337359 CrossRefGoogle Scholar
- 22.E.I. Sokolova, N.A. Martirosyan, M.D. Nersesyan, Russ. J. Inorg. Chem. 26(7), 1949 (1981)Google Scholar
- 23.S.S. Simonyan, E.V. Agababyan, S.K. Dolukhanyan, S.S. Petrosyan, Inorg. Mater. 26(4), 762 (1990). (in Russ.) Google Scholar
- 24.G. Renaudin, K. Yvon, S.K. Dolukhanyan, N.N. Aghajanyan, VSh Shekhtman, J. Alloys Compd. (2003). https://doi.org/10.1016/S0925-8388(03)00107-5 CrossRefGoogle Scholar
- 25.S.K. Dolukhanyan, N.N. Aghajanyan, NATO Science for Peace and Security Series, Series C: Environmental Security; 743-750; Carbon Nanomaterials in Clean Energy Hydrogen Systems, UCNCEHS, NATO Advanced Research Workshop, 2007 by Springer, Dordrecht, (2008) https://doi.org/10.1007/978-1-4020-8898-8_93
- 26.T. Lin, J. Jiang, X.-F. Bian, Y. Dong, Trans. Nonferrous Met. Soc. China (2006). https://doi.org/10.1016/S1003-6326(06)60106-4 CrossRefGoogle Scholar
- 27.A.I. Efimov, L.P. Belorukova, I.V. Vasil’kova, V.P. Chechev, Properties of Inorganic Phases: A handbook [in Russ.] (Khimiya, Leningrad, 1983)Google Scholar
- 28.C. Colinet, A. Pasturel, K.H.J. Buschow, J. Alloys Compd. (1997). https://doi.org/10.1016/S0925-8388(96)02590-X CrossRefGoogle Scholar
- 29.W.E. Krull, R.W. Newman, J. Appl. Crystallogr. (1970). https://doi.org/10.1107/S0021889870006787 CrossRefGoogle Scholar
- 30.K. Chu, F. Wang, Y. Li, X. Wang, D. Huang, H. Zhang, Carbon 133, 127 (2018)CrossRefGoogle Scholar
- 31.K. Chu, F. Wang, Y. Li, X. Wang, D. Huang, Z. Geng, Composites Part A 109, 267 (2018)CrossRefGoogle Scholar
- 32.K. Niwase, T. Tanaka, Y. Kakimoto, K.N. Ishihara, P.H. Shingu, Mater. Trans. 36(2), 282 (1995)CrossRefGoogle Scholar
- 33.J. Tang, W. Zhao, L. Li, A.U. Falster, W.B. Simmons Jr., W.L. Zhou, Y. Ikuhara, J.H. Zhang, J. Mater. Res. 11(3), 733 (1996)CrossRefGoogle Scholar
- 34.N. Sadeghi, M.R. Akbarpour, H. Aghajani, Mater. Sci. Eng. A 734, 164 (2018)CrossRefGoogle Scholar
- 35.M. Tarnowski, K. Kulikowski, T. Borowski, B. Rajchel, T. Wierchoń, Diam. Relat. Mater. 75, 123 (2017)CrossRefGoogle Scholar
- 36.M. Kot, T. Moskalewicz, B. Wendler, A. Czyrska-Filemonowicz, W. Rakowski, Sol. St. Phenom. 177, 36 (2011)CrossRefGoogle Scholar
- 37.D. Martínez-Martínez, C. López-Cartes, A. Fernández, J.C. Sánchez-López, Thin Solid Films 517, 1662 (2009)CrossRefGoogle Scholar
- 38.J. Musil, P. Novák, R. Čerstvý, Z. Soukup, J. Vac. Sci. Technol. A 28(2), 244 (2010)CrossRefGoogle Scholar
- 39.D. Marchetto, P. Restuccia, A. Ballestrazzi, M.C. Righi, A. Rota, S. Valeri, Carbon 116, 375 (2017)CrossRefGoogle Scholar
- 40.S. Zhang, X.L. Bui, J. Jiang, X. Li, Surf. Coat. Technol. 198, 206 (2005)CrossRefGoogle Scholar
- 41.L. Bokobza, J.-L. Bruneel, M. Couzi, C. 1, 77 (2015). https://doi.org/10.3390/c1010077 CrossRefGoogle Scholar
- 42.A. Ferrari, Sol. St. Commun. 143, 47 (2007)CrossRefGoogle Scholar
- 43.S. Osswald, M. Havel, Y. Gogotsi, J. Raman Spectrosc. 38, 728 (2007)CrossRefGoogle Scholar
- 44.N. Shimodaira, A. Masui, J. Appl. Phys. 92(2), 902 (2002)CrossRefGoogle Scholar
- 45.L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006)CrossRefGoogle Scholar
- 46.A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl, Carbon 43, 1731 (2005)CrossRefGoogle Scholar