Advertisement

Relation Between Zn Additions, Microstructure and Corrosion Behavior of New Wrought Mg-5Al Alloys

  • Polina Metalnikov
  • Guy Ben-HamuEmail author
  • Kwang Seon Shin
Article
  • 35 Downloads

Abstract

In the present study, the effect of varying Zn additions (0.93–3.16 wt%) on the corrosion resistance of wrought Mg-5Al alloys was studied and related to the microstructure changes. Three secondary phases were found: Al–Mn, β-Mg17Al12 enriched with Zn, and Φ-Mg21(Al, Zn)17; the latter observed only in alloys with relatively high Zn content. The corrosion behavior in short periods of immersion is related to pitting corrosion, and strongly influenced by micro-galvanic effects between the secondary phase particles and the α-Mg matrix. In long periods of immersion, a protective layer is formed, and filiform corrosion observed for alloys with Zn content above 1 wt%. However, the micro-galvanic effects still play a crucial role in deterioration of corrosion resistance in alloys with relatively high Zn content. These effects depend on the cathodic behavior of the particles, and on the total number of the particles presented on the alloy’s surface.

Graphic Abstract

Keywords

Magnesium alloys Zn content Microstructure Corrosion resistance Filiform corrosion 

Notes

Acknowledgements

We would like to thank Dr. Vladimir Ezersky for the TEM measurements. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    D.S. Kumar, C.T. Sasanka, K. Ravindra, K.N.S. Suman, Am. J. Mater. Sci. Technol. 4, 12–30 (2015)Google Scholar
  2. 2.
    C.J. Bettles, M.A. Gibson, JOM 57, 46–49 (2005)CrossRefGoogle Scholar
  3. 3.
    M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson, Prog. Mater Sci. 89, 92–193 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Ben-Haroush, G. Ben-Hamu, D. Eliezer, L. Wagner, Corros. Sci. 50, 1766–1778 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Parnell, CES Edupack (Granta Design Ltd., Cambridge, 2017)Google Scholar
  6. 6.
    J.R. Davis (ed.), ASM specialty handbook: aluminum and aluminum alloys (ASM International, Metals Park, 1993)Google Scholar
  7. 7.
    G.L. Song, A. Atrens, Adv. Eng. Mater. 1, 11–33 (1999)CrossRefGoogle Scholar
  8. 8.
    R.C. Zeng, J. Zhang, W.J. Huang, W. Dietze, K.U. Kainer, C. Blawert, K. Wei, T. Nonferr, Metal. Soc. 16, s763–s771 (2006)Google Scholar
  9. 9.
    K.W. Guo, Recent Pat. Corros. Sci. 2, 13–21 (2010)CrossRefGoogle Scholar
  10. 10.
    K. Gusieva, C.H.J. Davies, J.R. Scully, N. Birbilis, Int. Mater. Rev. 60, 169–194 (2015)CrossRefGoogle Scholar
  11. 11.
    G. Ben-Hamu, D. Eliezer, Mater. Corros. 62, 1–6 (2012)Google Scholar
  12. 12.
    G. Ben-Hamu, D. Eliezer, K.S. Shin, in 3rd International Conference on Corrosion, Processes and Advanced Materials in Industry, 2007Google Scholar
  13. 13.
    G. Ben-Hamu, D. Eliezer, K.S. Shin, Mater. Sci. Eng. A 447, 35–43 (2007)CrossRefGoogle Scholar
  14. 14.
    G. Ben-Hamu, D. Eliezer, K.S. Shin, Intermetallics 16, 860–867 (2008)CrossRefGoogle Scholar
  15. 15.
    G. Ben-Hamu, D. Eliezer, K.S. Shin, L. Wagner, Corros. Sci. Technol. 7, 152–157 (2008)Google Scholar
  16. 16.
    G. Ben-Hamu, D. Eliezer, K. Shin, Mater. Sci. Technol. 22, 1213–1218 (2006)CrossRefGoogle Scholar
  17. 17.
    G. Ben-Hamu, D. Eliezer, A. Kaya, Y.G. Na, K.S. Shin, Mater. Sci. Eng. A 435–436, 579–587 (2006)CrossRefGoogle Scholar
  18. 18.
    V. Lisitsyn, G. Ben-Hamu, D. Eliezer, K.S. Shin, Corros. Sci. 52, 2280–2290 (2010)CrossRefGoogle Scholar
  19. 19.
    V. Lisitsyn, G. Ben-Hamu, D. Eliezer, K.S. Shin, Corros. Sci. 51, 776–784 (2009)CrossRefGoogle Scholar
  20. 20.
    N.D. Nam, M. Mathesh, M. Forsyth, D.S. Jo, J. Alloy. Compd. 542, 199–206 (2012)CrossRefGoogle Scholar
  21. 21.
    N.D. Nam, J. Magnes, Alloys 2, 190–195 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, S. Feliú Jr., Electrochim. Acta 53, 7890–7902 (2008)CrossRefGoogle Scholar
  23. 23.
    M.-C. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50, 1939–1953 (2008)CrossRefGoogle Scholar
  24. 24.
    D. Daloz, P. Steinmetz, G. Michot, Corrosion (Houston) 53, 944–954 (1997)CrossRefGoogle Scholar
  25. 25.
    N.D. Nam, M. Mathesh, T.V. Lee, H.T. Nguyen, J. Alloy. Compd. 616, 662–668 (2014)CrossRefGoogle Scholar
  26. 26.
    X.B. Liu, D.Y. Shan, Y.W. Song, E.H. Han, T. Nonferr, Metal. Soc. 20, 1345–1350 (2010)Google Scholar
  27. 27.
    X. Gao, J.F. Nie, Scripta Mater. 56, 645–648 (2007)CrossRefGoogle Scholar
  28. 28.
    G. Ben-Hamu, D. Eliezer, C.E. Cross, T. Böllinghaus, Mater. Sci. Eng. A 452–453, 210–218 (2007)CrossRefGoogle Scholar
  29. 29.
    H. Feng, S. Liu, Y. Du, T. Lei, R. Zeng, T. Yuan, J. Alloy. Compd. 695, 2330–2338 (2017)CrossRefGoogle Scholar
  30. 30.
    F. Zarandi, G. Seale, R. Verma, E. Essadiqi, S. Yue, Mater. Sci. Eng. A 496, 159–168 (2008)CrossRefGoogle Scholar
  31. 31.
    P. Nautiyal, J. Jain, A. Agarwal, Mater. Sci. Eng. A 650, 183–189 (2016)CrossRefGoogle Scholar
  32. 32.
    G. Ben-Hamu, P. Metalnikov, D. Eliezer, K.S. Shin, in Proceeding of the 11th International Conference on Magnesium Alloys and their Applications, ed. by Z. Fan, C. Mendis (Old Windsor, UK, 2018), pp. 259–265Google Scholar
  33. 33.
    Z. Qiao, Z. Shi, N. Hort, N.I. Zainal Abidin, A. Atrens, Corros. Sci. 61, 185–207 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Fajardo, G.S. Frankel, J. Electrochem. Soc. 162, C693–C701 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Tkacz, J. Minda, S. Fintová, J. Wasserbauer, Materials 9, 43–48 (2016)CrossRefGoogle Scholar
  36. 36.
    J.W. Choi, K.S. Shin, Met. Mater. Int. 23, 745–755 (2017)CrossRefGoogle Scholar
  37. 37.
    Y.P. Ren, G.W. Qin, W.L. Pei, S. Li, Y. Guo, H.D. Zhao, T. Nonferr, Metal. Soc. 22, 241–245 (2012)Google Scholar
  38. 38.
    R. Berthold, G. Kreiner, U. Burkhardt, S. Hoffmann, G. Auffermann, Y. Prots, E. Dashjav, A. Amarsanaa, M. Mihalkovic, Intermetallics 32, 259–273 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Danaie, R.M. Asmussen, P. Jakupi, D.W. Shoesmith, G.A. Botton, Corros. Sci. 83, 299–309 (2014)CrossRefGoogle Scholar
  40. 40.
    P. Metalnikov, G. Ben-Hamu, Y. Templeman, K.S. Shin, L. Meshi, Mater. Charact. 145, 101–115 (2018)CrossRefGoogle Scholar
  41. 41.
    H. Alves, U. Koster, E. Aghion, D. Eliezer, Mater. Technol. Adv. Perform. Mater. 16(2), 110–126 (2001)Google Scholar
  42. 42.
    Y. Zhang, J. Li, J. Li, J. Alloy. Compd. 730, 458–470 (2018)CrossRefGoogle Scholar
  43. 43.
    N.D. Nam, W.C. Kim, J.G. Kim, K.S. Shin, H.C. Jung, Corros. Sci. 51, 2942–2949 (2009)CrossRefGoogle Scholar
  44. 44.
    P. Liang, T. Tarfa, J.A. Robinson, S. Wagner, P. Ochin, M.G. Harmelin, H.J. Seifert, H.L. Lukas, F. Aldinger, Thermochim. Acta 314, 87–110 (1998)CrossRefGoogle Scholar
  45. 45.
    J.-B. Jorcin, M.E. Orazem, N. Pébère, B. Tribollet, Electrochim. Acta 51, 1473–1479 (2006)CrossRefGoogle Scholar
  46. 46.
    A.D. King, N. Birbilis, J.R. Scully, Electrochim. Acta 121, 394–406 (2014)CrossRefGoogle Scholar
  47. 47.
    A. Bautista, Prog. Org. Coat. 28, 49–58 (1996)CrossRefGoogle Scholar
  48. 48.
    H. Wang, Y. Song, J. Yu, D. Shan, H. Han, J. Electrochem. Soc. 164, C574–C580 (2017)CrossRefGoogle Scholar
  49. 49.
    O. Lunder, J.E. Lein, S.M. Hesjevik, T.K. Aune, K. Nisancioglu, Mater. Corros. 45, 331–340 (1994)CrossRefGoogle Scholar
  50. 50.
    P. Schmutz, V. Guillaumin, R.S. Lillard, J.A. Lillard, G.S. Frankel, J. Electrochem. Soc. 150, B99–B110 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSami Shamoon College of EngineeringAshdodIsrael
  2. 2.Department of Material EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Magnesium Technology Innovation Center, RIAM, School of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations