Structural and Mechanical Characterization of Platinum Thin Films Prepared Electrochemically on ITO/Glass Substrate

  • A. Kathalingam
  • Karuppasamy Pandian Marimuthu
  • K. Karuppasamy
  • Yeon-Sik Chae
  • Hyungyil Lee
  • Hyun-Chang Park
  • Hyun-Seok KimEmail author


We report the structural characterization and nanomechanical properties of platinum (Pt) thin films prepared through facile electrochemical synthesis. The Pt thin films were coated onto indium tin oxide (ITO)/glass substrates by two-electrode electrochemical deposition at room temperature. They were characterized using X-ray diffraction, scanning electron microscopy, and atomic force microscopy for structural and morphological analyses. Indentation depth-dependent hardness and elastic modulus of the prepared films were analyzed using the nanoindentation technique. Furthermore, the mechanical properties of the ITO/glass substrates were also investigated to understand the influence of the substrate on the film properties. The prepared films showed reasonable mechanical and structural properties suitable for device applications. Finally, the photoconductivity effect of the prepared Pt film was also studied to determine its suitability for device applications. The Pt film was also coated on Cu plates to check substrates effects on this electrochemical deposition, and found that the Cu plates produced well adherent smooth films.

Graphic Abstract


Film characterization Electrochemical synthesis Nanoindentation Platinum thin films 



This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2017R1A2B3009706 & NRF- 2017R1D1A1A09000823) and the research program of Dongguk University in 2019 (S-2019-G0001-00018).

Supplementary material

12540_2019_527_MOESM1_ESM.docx (106 kb)
Supplementary material 1 (DOCX 105 kb)


  1. 1.
    K. Abbas, Characterization of the mechanical properties of freestanding platinum thin films, The University of New Mexico (2013)Google Scholar
  2. 2.
    X. Su, J. Wu, B.J. Hinds, Catalytic activity of ultrathin Pt films on aligned carbon nanotube arrays. Carbon (2011). CrossRefGoogle Scholar
  3. 3.
    Y. Liu, D. Gokcen, U. Bertocci, T.P. Moffat, Self-terminating growth of platinum films by electrochemical deposition. Science (80) 338, 1327–1330 (2012)CrossRefGoogle Scholar
  4. 4.
    J.D. Lović, S.I. Stevanović, D.V. Tripković, V.M. Jovanović, R.M. Stevanović, A.V. Tripković, K.D. Popović, Catalytic activities of Pt thin films electrodeposited onto Bi coated glassy carbon substrate toward formic acid electrooxidation. J. Electroanal. Chem. 735, 1–9 (2014). CrossRefGoogle Scholar
  5. 5.
    A.L. Romasco, L.H. Friedman, L. Fang, R.A. Meirom, T.E. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, C.L. Muhlstein, Deformation behavior of nanograined platinum films. Thin Solid Films 518, 3866–3874 (2010). CrossRefGoogle Scholar
  6. 6.
    M.A. Mamun, D. Gu, H. Baumgart, A.A. Elmustafa, Nanomechanical properties of platinum thin films synthesized by atomic layer deposition. Surf. Coat. Technol. 265, 185–190 (2015). CrossRefGoogle Scholar
  7. 7.
    H.M. Ghartavol, R.S. Moakhar, A. Dolati, Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation. J. Chem. Sci. 129, 1399–1410 (2017). CrossRefGoogle Scholar
  8. 8.
    S. Brimaud, R.J. Behm, Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. J. Am. Chem. Soc. 135, 11716–11719 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Tang, K. Jonnalagadda, I. Chasiotis, J. Lambros, R. Polcawich, J. Pulskamp, M. Dubey, Effect of strain-rate on the mechanical behavior of Pt-films for MEMS, in SEM Annual Conference and Exposition on Experimental and Applied Mechanics (2007), pp. 1270–1275Google Scholar
  10. 10.
    S.R. Kalidindi, S. Pathak, Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56, 3523–3532 (2008)CrossRefGoogle Scholar
  11. 11.
    Z. Ma, S. Long, Y. Pan, Y. Zhou, Creep behavior and its influence on the mechanics of electrodeposited nickel films. J. Mater. Sci. Technol. 25, 90–94 (2009)Google Scholar
  12. 12.
    M. Kim, K.P. Marimuthu, J.H. Lee, H. Lee, Spherical indentation method to evaluate material properties of high-strength materials. Int. J. Mech. Sci. 106, 117–127 (2016). CrossRefGoogle Scholar
  13. 13.
    W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRefGoogle Scholar
  14. 14.
    W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004). CrossRefGoogle Scholar
  15. 15.
    M.A. Shah, Growth of uniform nanoparticles of platinum by an economical approach at relatively low temperature. Sci. Iran. 19, 964–966 (2012)CrossRefGoogle Scholar
  16. 16.
    F. Sen, Y. Karatas, M. Gulcan, M. Zahmakiran, Amylamine stabilized platinum(0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine-borane. RSC Adv. 4, 1526–1531 (2014). CrossRefGoogle Scholar
  17. 17.
    O. Tuna, Y. Selamet, G. Aygun, L. Ozyuzer, High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D Appl. Phys. 43, 055402 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Shen, Y. Lou, Z. Wang, X. Xu, In-situ growth and characterization of indium tin oxide nanocrystal rods. Coatings 7, 212 (2017). CrossRefGoogle Scholar
  19. 19.
    F. Rickhey, J.H. Lee, H. Lee, A contact size-independent approach to the estimation of biaxial residual stresses by Knoop indentation. Mater. Des. 84, 300–312 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Humood, A. Beheshti, A.A. Polycarpou, Surface reliability of annealed and tempered solar protective glasses: indentation and scratch behavior. Sol. Energy 142, 13–25 (2017). CrossRefGoogle Scholar
  21. 21.
    K. Zeng, F. Zhu, J. Hu, L. Shen, K. Zhang, H. Gong, Investigation of mechanical properties of transparent conducting oxide thin films. Thin Solid Films 443, 60–65 (2003)CrossRefGoogle Scholar
  22. 22.
    M.S. Pradeepkumar, K.P. Sibin, N. Swain, N. Sridhara, A. Dey, H.C. Barshilia, A.K. Sharma, Nanoindentation response of ITO film. Ceram. Int. 41, 8223–8229 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Cai, H. Bangert, Hardness measurements of thin films-determining the critical ratio of depth to thickness using FEM. Thin Solid Films 264, 59–71 (1995). CrossRefGoogle Scholar
  24. 24.
    L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, X. Han, Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014). CrossRefGoogle Scholar
  25. 25.
    K. Abbas, S. Alaie, M. Ghasemi Baboly, M.M.M. Elahi, D.H. Anjum, S. Chaieb, Z.C. Leseman, Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology. J. Micromech. Microeng. 26, 015007 (2015). CrossRefGoogle Scholar
  26. 26.
    S. Kumar, M.T. Alam, Z. Connell, M.A. Haque, Electromigration stress induced deformation mechanisms in free-standing platinum thin films. Scr. Mater. 65, 277–280 (2011). CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Millimeter-wave Innovation Technology Research CenterDongguk UniversitySeoulRepublic of Korea
  2. 2.Department of Mechanical EngineeringSogang UniversitySeoulRepublic of Korea
  3. 3.Division of Electronics and Electrical EngineeringDongguk UniversitySeoulRepublic of Korea
  4. 4.Department of Computer Electronics EngineeringSeoil UniversitySeoulRepublic of Korea

Personalised recommendations