Wear Tribo-Performances of Laser Cladding Colmonoy-6 and Stellite-6 Micron Layers on Stainless Steel 304 Using Yb:YAG Disk Laser

  • N. JeyaprakashEmail author
  • Che-Hua Yang
  • Sheng-Po Tseng


Stainless steel material has been widely used in aeronautical, chemical and nuclear industries due to good corrosion resistance. However, the material has less hardness and wear resistance. In this study, two various depositions namely Colmonoy-6 and Stellite-6 have produced on 304 Stainless steel. Besides, the coating was examined to reveal their metallurgical, mechanical and tribological properties. In addition, wear mechanism, wear debris and roughness averages were studied. The outcomes indicate that both coatings show with dendrite structure due to rapid cooling rates. Hardness of the clad surface has improved than substrate material. The results of friction coefficient of specimen with Colmonoy-6 is lower than that of specimens Stellite-6 and substrate. Also, wear resistance of Colmonoy-6 has increased 49 times than substrate sample, which reveals that Colmonoy-6 laser cladding plays role on wear resistance. Adhesive and abrasive are the major wear mechanisms in the present study.

Graphic Abstract


Stainless steel 304 Laser cladding XRD Microstructure Hardness Wear performance Wear debris Roughness 



Author’s wishes to thank Ministry of Science and Technology (MOST), Taiwan (Republic of China) for providing financial support to carry out this research work.


  1. 1.
    M.K. Kumar, R. Saravanan, R. Sellamuthu, V. Narayanan, Mater. Today: Proc. 5, 7571 (2018)Google Scholar
  2. 2.
    M. Afzal, M. Ajmal, A. Nusair Khan, A. Hussain, R. Akhter, Opt. Laser Technol. 56, 202 (2014)CrossRefGoogle Scholar
  3. 3.
    J.R. Davis, Surface Engineering for Corrosion and Wear Resistance (ASM International, Cleveland, 2001)Google Scholar
  4. 4.
    A. Bartkowska, A. Pertek, M. Jankowiak, K. Jozwiak, Arch. Metall. Mater. 57, 211 (2012)CrossRefGoogle Scholar
  5. 5.
    J.R. Davis, Handbook of Thermal Spray Technology (ASM International, Cleveland, 2004)Google Scholar
  6. 6.
    W.M. Steen, J. Mazumder, Laser Material Processing (Springer, Berlin, 2010)CrossRefGoogle Scholar
  7. 7.
    J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application (Butterworth-Heinemann, Oxford, 2005)Google Scholar
  8. 8.
    E. Jonda, Z. Brytan, K. Labisz, A. Drygała, Arch. Metall. Mater. 61, 1309 (2016)CrossRefGoogle Scholar
  9. 9.
    N. Jeyaprakash, M. Duraiselvam, R. Raju, Arch. Metall. Mater. 63, 1303 (2018)Google Scholar
  10. 10.
    Q.B. Liu, H. Liu, J. Mater. Process. Technol. 88, 77 (1999)CrossRefGoogle Scholar
  11. 11.
    W. Tarasiuk, A.I. Gordienko, A.T. Wolocko, J. Piwnik, B. Szczucka-Lasota, Arch. Metall. Mater. 60, 2939 (2015)CrossRefGoogle Scholar
  12. 12.
    B.S. Yilbas, S.Z. Shuja, S.M.A. Khan, A. Aleem, Appl. Surf. Sci. 255, 9396 (2009)CrossRefGoogle Scholar
  13. 13.
    W.L. Xu, T.M. Yue, H.C. Man, C.P. Chan, Surf. Coat. Technol. 200, 5077 (2006)CrossRefGoogle Scholar
  14. 14.
    J.H. Yao, L. Wang, Q. Zhang, F.Z. Kong, C.H. Lou, Z.J. Chen, Opt. Laser Technol. 40, 838 (2008)CrossRefGoogle Scholar
  15. 15.
    B.G. Guo, J.S. Zhou, S.T. Zhang, H.H. Zhou, Y.P. Pu, J.M. Chen, Mater. Sci. Eng. A 480, 404 (2008)CrossRefGoogle Scholar
  16. 16.
    A.H. Wang, X.L. Zhang, X.F. Zhang, X.Y. Qiao, H.G. Xu, C.S. Xie, Mater. Sci. Eng. A 475, 312 (2008)CrossRefGoogle Scholar
  17. 17.
    Yuxin Li, Su Keqiang, Peikang Bai, Wu Liyun, Bin Liu, Su Hongwen, Du Wenbo, Met. Mater. Int. 25, 1366 (2019)CrossRefGoogle Scholar
  18. 18.
    Hsuan-Han Lai, Chih-Chun Hsieh, Chi-Ming Lin, Wu Weite, Met. Mater. Int. 22, 101 (2016)CrossRefGoogle Scholar
  19. 19.
    V. Ramasubbu, G. Chakraborty, S.K. Albert, A.K. Bhaduri, Mater. Sci. Technol. 27, 573 (2011)CrossRefGoogle Scholar
  20. 20.
    F. Fernandes, A. Cavaleiro, A. Loureiro, Surf. Coat. Technol. 207, 196 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Kumar, V. Ramakrishnan, S.K. Albert, A.K. Bhaduri, K.K. Ray, J. Nucl. Mater. 495, 431 (2017)CrossRefGoogle Scholar
  22. 22.
    R. Singh, D. Kumar, S.K. Mishra, S.K. Tiwari, Surf. Coat. Technol. 251, 87 (2014)CrossRefGoogle Scholar
  23. 23.
    M.M. Ferozhkhan, M. Duraiselvam, R. Ravibharath, Procedia Technol. 25, 1305 (2016)CrossRefGoogle Scholar
  24. 24.
    Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM Standard, 2010, G: 99-05Google Scholar
  25. 25.
    L.C. Lim, Q. Ming, Z.D. Chen, Surf. Coat. Technol. 106, 183 (1998)CrossRefGoogle Scholar
  26. 26.
    H. Zhang, Y. Shia, M. Kutsuna, G.J. Xu, Nucl. Eng. Des. 240, 2691 (2010)CrossRefGoogle Scholar
  27. 27.
    Q. Li, D. Zhang, T. Lei, Ch. Chen, W. Chen, Surf. Coat. Technol. 137, 122 (2001)CrossRefGoogle Scholar
  28. 28.
    A. Conde, F. Zubiri, J. de Damborenea, Mater. Sci. Eng. A 334, 233 (2002)CrossRefGoogle Scholar
  29. 29.
    A. Gholipour, M. Shamanian, F. Ashrafizadeh, J. Alloys Compd. 509, 4905 (2011)CrossRefGoogle Scholar
  30. 30.
    G.R. Mirshekari, S. Daee, S.F. Bonabi, M.R. Tavakoli, A. Shafyei, M. Safaei, Surf. Interfaces 9, 79 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Laridjani, A. Amadeh, H. Kashani, Mater. Sci. Technol. 26, 1184 (2010)CrossRefGoogle Scholar
  32. 32.
    C.P. Paul, A. Jain, P. Ganesh, J. Negi, A.K. Nath, Opt. Lasers Eng. 44, 1096 (2006)CrossRefGoogle Scholar
  33. 33.
    L.C. Lim, Q. Ming, Z.D. Chen, Surf. Coat. Technol. 106, 183 (1998)CrossRefGoogle Scholar
  34. 34.
    C. Navas, R. Colaco, J. de Damborenea, R. Vilar, Surf. Coat. Technol. 200, 6854 (2006)CrossRefGoogle Scholar
  35. 35.
    N. Jeyaprakash, C.-H. Yang, M. Duraiselvam, G. Prabu, Results Phys. 12, 1610 (2019)CrossRefGoogle Scholar
  36. 36.
    N. Jeyaprakash, M. Duraiselvam, S.V. Aditya, Surf. Rev. Lett. 26, 1950009 (2019)Google Scholar
  37. 37.
    P. Li, L.Y. Wu, Y.M. Guiong, X. Liu, Mater. Sci. Eng. A 546, 146 (2012)CrossRefGoogle Scholar
  38. 38.
    V.E. Buchanan, P.H. Shipway, D.G. McCartney, Wear 263, 99 (2007)CrossRefGoogle Scholar
  39. 39.
    D. Kesavan, M. Kamaraj, Surf. Coat. Technol. 204, 4034 (2010)CrossRefGoogle Scholar
  40. 40.
    G. Chakraborty, N. Kumar, C.R. Das, S.K. Albert, A.K. Bhaduri, S. Dash, A.K. Tyagi, Surf. Coat. Technol. 244, 180 (2014)CrossRefGoogle Scholar
  41. 41.
    R. Ahmed, O. Ali, N.H. Faisal, N.M. Al-Anazi, S. Al-Mutairi, F.L. Toma et al., Wear 322, 133 (2015)CrossRefGoogle Scholar
  42. 42.
    K. Velmanirajan, A.S.A. Thaheer, R. Narayanasamy, C.A. Basha, Mater. Des. 41, 239 (2012)CrossRefGoogle Scholar
  43. 43.
    Y. Birol, Wear 269, 664 (2010)CrossRefGoogle Scholar
  44. 44.
    L.J. da Silva, A.S.C.M. D’Oliveira, Wear 350, 130 (2016)CrossRefGoogle Scholar
  45. 45.
    L.J. da Silva, C.J. Scheuer, A.S.C.M. D’Oliveira, Wear 428, 387 (2019)CrossRefGoogle Scholar
  46. 46.
    R.C. Cozza, J. Mater. Res. Technol. 3, 191 (2014)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Centre of Mass Customization Additive ManufactureNational Taipei University of TechnologyTaipeiTaiwan, R.O.C.
  2. 2.Institute of Manufacturing TechnologyNational Taipei University of TechnologyTaipeiTaiwan, R.O.C.

Personalised recommendations