Advertisement

Comparative Modeling of Power Hardening Micro-scale Metallic Plates Based on Lower and Higher-Order Strain Gradient Plasticity Theories

  • 10 Accesses

Abstract

Present study investigates a comparative study of lower and higher-order strain gradient plasticity (SGP) theories involving the size-dependent micromechanically flexural behaviors of crystalline thin plates. The investigation includes the Mechanism-Based and the Chen–Wang SGP models established on the Taylor dislocation hardening by evoking the statistically stored dislocations and geometrically necessary dislocations. In addition, these models are conjugated with a multiple plastic work-hardening law proposed for the microstructural applications of the SGP. An analytical approach based on energy minimizing method is used for obtaining deflection values in terms of the length scale, exponent of the work-hardening and the tangential module. The obtained results indicate a meaningful dependence of the deflections to the length scale, plastic work hardening and other parameters as well.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    C.S. Han, F. Roters, D. Raabe, Met. Mater. Int. 12, 407–411 (2006)

  2. 2.

    L. Hu, S. Jiang, Y. Zhang, D. Sun, Met. Mater. Int. 23, 1075–1086 (2017)

  3. 3.

    P. Maj, J. Zdunek, J. Mizera, K.J. Kurzydlowski, B. Sakowicz, M. Kaminski, Met. Mater. Int. 23, 54–67 (2017)

  4. 4.

    B. Song, H. Zhao, L. Chai, N. Guo, H. Pan, H. Chen, R. Xin, Met. Mater. Int. 22, 887–896 (2016)

  5. 5.

    A. Darvishvand, A. Zajkani, Microsyst. Technol. 25, 4277–4289 (2019)

  6. 6.

    D. Kiener, C. Motz, T. Schöbert, M. Jenko, G. Dehm, Adv. Eng. Mater. 8, 1119–1125 (2006)

  7. 7.

    J.S. Stölken, A.G. Evans, Acta Mater. 46, 5109–5115 (1998)

  8. 8.

    S. Vakil, A. Zajkani, Mech. Mater. 137, 103135 (2019)

  9. 9.

    N.A. Stelmashenko, M.G. Walls, L.M. Brown, Y.V. Milman, Acta Metall. Mater. 41, 2855–2865 (1993)

  10. 10.

    N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Acta Metall. Mater. 42, 475–487 (1994)

  11. 11.

    A. Darvishvand, A. Zajkani, Meccanica (2019) (accepted)

  12. 12.

    C.W. Nan, D.R. Clarke, Acta Mater. 44, 3801–3811 (1996)

  13. 13.

    A. Darvishvand, A. Zajkani, Eur. J. Mech. A/Solids 77, 103777 (2019)

  14. 14.

    A. Darvishvand, A. Zajkani, Struct. Eng. Mech. Int. J. 71, 223–232 (2019)

  15. 15.

    N. Huber, W.D. Nix, H. Gao, Proc. R. Soc. A Math. Phys. Eng. Sci. 458, 1593–1620 (2002)

  16. 16.

    M.B. Taylor, H.M. Zbib, M.A. Khaleel, Int. J. Plast. 18, 415–442 (2002)

  17. 17.

    I. Tsagrakis, E.C. Aifantis, Trans. ASME 124, 352–357 (2002)

  18. 18.

    W.D. Nix, H. Gao, J. Mech. Phys. Solids 46, 411–425 (1998)

  19. 19.

    P. Cermelli, M.E. Gurtin, Int. J. Solids Struct. 39, 6281–6309 (2002)

  20. 20.

    L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Int. J. Solids Struct. 41, 5209–5230 (2004)

  21. 21.

    M.G.D. Geers, W.A.M. Brekelmans, C.J. Bayley, Model. Simul. Mater. Sci. Eng., 15(1), S133–S145 (2007)

  22. 22.

    A. Acharya, A.J. Beaudoin, J. Mech. Phys. Solids 48, 2213–2230 (2000)

  23. 23.

    H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47, 1239–1263 (1999)

  24. 24.

    Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 48, 99–128 (2000)

  25. 25.

    Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, Int. J. Plast. 20, 753–782 (2004)

  26. 26.

    S.H. Chen, T.C. Wang, Acta Mater. 48, 3997–4005 (2000)

  27. 27.

    H.B. Muhlhaus, E.C. Aifantis, Acta Mech. 89, 217–231 (1991)

  28. 28.

    N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 41, 1825–1857 (1993)

  29. 29.

    N.A. Fleck, J.W. Hutchinson, Adv. Appl. Mech. 33, 295–361 (1997)

  30. 30.

    N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 49, 2245–2271 (2001)

  31. 31.

    P. Gudmundson, J. Mech. Phys. Solids 52, 1379–1406 (2004)

  32. 32.

    S.K. Park, X.-L. Gao, J. Micromech. Microeng. 16, 2355–2359 (2006)

  33. 33.

    S.H. Chen, B. Feng, Acta Mech. 219, 291–307 (2011)

  34. 34.

    N. Challamel, C.M. Wang, Nanotechnology 19, 1–7 (2008)

  35. 35.

    W. Wang, Y. Huang, K.J. Hsia, K.X. Hu, A. Chandra, Int. J. Plast. 19, 365–382 (2003)

  36. 36.

    B.N. Patel, D. Pandit, S.M. Srinivasan, Procedia Eng. 173, 1064–1070 (2017)

  37. 37.

    Y.Q. Mao, S.G. Ai, D.N. Fang, Y.M. Fu, C.P. Chen, Compos. Struct. 101, 168–179 (2013)

  38. 38.

    Z.F. Shi, B. Huang, H. Tan, Y. Huang, T.Y. Zhang, P.D. Wu, K.C. Hwang, H. Gao, Int. J. Plast. 24, 1606–1624 (2008)

  39. 39.

    A. Arsenlis, D.M. Parks, Acta Mater. 47, 1597–1611 (1999)

  40. 40.

    S.H. Chen, T.C. Wang, Int. J. Plast. 18, 971–995 (2002)

  41. 41.

    H. Ban, Y. Yao, S. Chen, D. Fang, Int. J. Plast. 95, 251–263 (2017)

  42. 42.

    H. Ban, Y. Yao, S. Chen, D. Fang, Int. J. Mech. Sci. 152, 524–534 (2019)

  43. 43.

    K.A. Lazopoulos, Mech. Res. Commun. 36, 777–783 (2009)

  44. 44.

    W.Y. Jung, W.T. Park, S.C. Han, Int. J. Mech. Sci. 87, 150–162 (2014)

  45. 45.

    B. Zhang, Y. He, D. Liu, L. Shen, J. Lei, Appl. Math. Model. 39, 3814–3845 (2015)

  46. 46.

    K.M. Liew, X.Q. He, S. Kitipornchai, Acta Mater. 54, 4229–4236 (2006)

  47. 47.

    D.A. Dillard, B. Mukherjee, P. Karnal, R.C. Batra, J. Frechette, Soft Matter 14, 3669–3683 (2018)

  48. 48.

    X. You, J.J. Pak, in 2013 Transducers Eurosensors XXVII 17th International Conference Solid-State Sensors, Actuators Microsystems, Transducers Eurosensors 2013, pp. 2443–2446 (2013)

  49. 49.

    J.F.W. Bishop, R. Hill, Lond. Edinb. Dublin Philos. Mag. J. Sci. 42, 1298–1307 (1951)

  50. 50.

    J.F.W. Bishop, R. Hill, Philos. Mag. Ser. 7(42), 414–427 (1951)

  51. 51.

    L. Zhou, S. Li, S. Huang, Mater. Des. 32, 353–360 (2011)

  52. 52.

    A. Darvishvand, A. Zajkani, Mech. Based Des. Struct. Mach. (2019). https://doi.org/10.1080/15397734.2019.1705167

  53. 53.

    A. Zajkani, A. Darvizeh, M. Darvizeh, R. Ansari, J. Strain Anal. Eng. Des. 49, 86–111 (2014)

Download references

Author information

Correspondence to Asghar Zajkani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darvishvand, A., Zajkani, A. Comparative Modeling of Power Hardening Micro-scale Metallic Plates Based on Lower and Higher-Order Strain Gradient Plasticity Theories. Met. Mater. Int. (2020) doi:10.1007/s12540-019-00524-8

Download citation

Keywords

  • Crystalline thin films
  • Strain gradient plasticity
  • Length scale
  • Bending
  • Micro-plate
  • MSG theory
  • Chen–Wang hardening law