Preform-Based Production of Al2O3-Reinforced Aluminium Matrix Composites by Using Various Modification Techniques

  • Kubilay OzturkEmail author
  • Ridvan Gecu
  • Ahmet Karaaslan


Metal matrix composites have a wide range of applications due to their lightweight, high strength and high wear resistance. In this study, Al2O3-reinforced AA7075 matrix composites were produced by using liquid metal infiltration method in two stages. In the first stage of the production, preforms were manufactured by using Al2O3 particles and different binders. Some of the preforms were sintered and some were not sintered. In the second step, liquid metal infiltration was performed on both sintered and not sintered samples. Some preforms were preheated before the infiltration and some were directly subjected to the liquid metal infiltration. The casting process was carried out in two different ways: (1) pouring the molten metal into the fired mould and (2) in situ melting of the metal during the mould firing. Fabricated composites were characterized by XRD, light metal microscopy, SEM, EDS, Brinell hardness and ball-on-disc type wear tests. When the microstructural, mechanical and tribological properties were taken into account, preheating and sintering preforms before casting were determined as performing best with the hardness of ~ 150 HB and the wear rate of 1.1 × 10−4 mm3/(N m), whereas the in situ melting caused decrease in the mechanical strength and wear resistance because of excessive oxidation.

Graphic Abstract


Metal matrix composites Infiltration Preform Al2O3 AA7075 



This research was supported by Yildiz Technical University Scientific Research Projects Coordination Department with the project number of FYL-2018-3337.


  1. 1.
    S. Gopalakrishnan, N. Murugan, Compos. Part B Eng. 43, 302 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Kisasoz, K.A. Guler, A. Karaaslan, Trans. Nonferrous Met. Soc. China 22, 1563 (2012)CrossRefGoogle Scholar
  3. 3.
    J. Roger, L. Guesnet, A. Marchais, Y. Le Petitcorps, J. Alloy. Compd 747, 484 (2018)CrossRefGoogle Scholar
  4. 4.
    D.J. Lloyd, Int. Mater. Rev. 39, 1 (1994)CrossRefGoogle Scholar
  5. 5.
    L. Ceschini, G. Minak, A. Morri, Compos. Sci. Technol. 66, 333 (2006)CrossRefGoogle Scholar
  6. 6.
    J. Singh, A. Chauhan, J. Mater. Res. Technol. 5, 159 (2016)CrossRefGoogle Scholar
  7. 7.
    S.V. Prasad, R. Asthana, Tribol. Lett. 17, 445 (2004)CrossRefGoogle Scholar
  8. 8.
    S.A. Sajjadi, H.R. Ezatpour, M. Torabi Parizi, Mater. Des. 34, 106 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Kok, J. Mater. Process. Technol. 161, 381 (2005)CrossRefGoogle Scholar
  10. 10.
    M.A. Taha, N.A. El-Mahallawy, J. Mater. Process. Technol. 73, 139 (1998)CrossRefGoogle Scholar
  11. 11.
    Y. Sahin, M. Kok, H. Celik, J. Mater. Process. Technol. 128, 280 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Hashim, L. Looney, M.S.J. Hashmi, J. Mater. Process. Technol. 119, 324 (2001)CrossRefGoogle Scholar
  13. 13.
    A. Atrian, G.H. Majzoobi, M.H. Enayati, H. Bakhtiari, Int. J. Miner. Metall. Mater. 21, 295 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Park, J. Lee, I. Jo, S. Cho, S.K. Lee, S.B. Lee, H.J. Ryu, S.H. Hong, Surf. Coat. Technol. 307, 399 (2016)CrossRefGoogle Scholar
  15. 15.
    S.Y. Oh, J.A. Cornie, K.C. Russell, Metall. Trans. A 20, 527 (1989)CrossRefGoogle Scholar
  16. 16.
    S. Pfeiffer, H. Lorenz, Z. Fu, T. Fey, P. Greil, N. Travitzky, Ceram. Int. 44, 20835 (2018)CrossRefGoogle Scholar
  17. 17.
    E. Candan, H. Ahlatci, H. Çïmenoǧlu, Wear 247, 133 (2001)CrossRefGoogle Scholar
  18. 18.
    F. Toptan, A.C. Alves, I. Kerti, E. Ariza, L.A. Rocha, Wear 306, 27 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Imran, A.R.A. Khan, J. Mater. Res. Technol. 8, 3347 (2019)CrossRefGoogle Scholar
  20. 20.
    S. Kumar, A. Kumar, C. Vanitha, Mater. Today Proc. 15, 21 (2019)CrossRefGoogle Scholar
  21. 21.
    R. Gecu, H. Atapek, A. Karaaslan, Tribol. Int. 115, 608 (2017)CrossRefGoogle Scholar
  22. 22.
    N. Eustathopoulos, M.G. Nicholas, B. Drevet, Wettability at High Temperatures (Pergamon, Oxford, 1999)Google Scholar
  23. 23.
    N. Panwar, A. Chauhan, Mater. Today Proc. 5, 5933 (2018)CrossRefGoogle Scholar
  24. 24.
    H. Zhang, J. Loukus, A. Loukus, Mater. Lett. 63, 310 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Ru, H. He, Y. Jiang, R. Zhou, Y. Hua, J. Alloy. Compd. 786, 321 (2019)CrossRefGoogle Scholar
  26. 26.
    S. Sawla, S. Das, Wear 257, 555 (2004)CrossRefGoogle Scholar
  27. 27.
    N.P. Suh, Wear 25, 111 (1973)CrossRefGoogle Scholar
  28. 28.
    M. Ramachandra, K. Radhakrishna, Mater. Sci. 24, 333 (2006)Google Scholar
  29. 29.
    J. Li, Y. Lu, H. Zhang, L. Xin, Tribol. Int. 81, 215 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringYildiz Technical UniversityIstanbulTurkey

Personalised recommendations