Plastic Behavior of Ferrite–Pearlite, Ferrite–Bainite and Ferrite–Martensite Steels: Experiments and Micromechanical Modelling

  • Saroj Kumar Basantia
  • Ankita Bhattacharya
  • Niloy KhutiaEmail author
  • Debdulal Das


In this work, low carbon low alloy steel specimens were subjected to suitable heat treatment schedules to develop ferrite–pearlite (FP), ferrite–bainite (FB) and ferrite–martensite (FM) microstructures with nearly equal volume fraction of hard second phase or phase mixture. The role of pearlite, bainite and martensite on mechanical properties and flow behaviour were investigated through experiments and finite element simulations considering representative volume elements (RVE) based on real microstructures. For micromechanical simulation, dislocation based model was implemented to formulate the flow behaviour of individual phases. The optimum RVE size was identified for accurate estimation of stress–strain characteristics of all three duplex microstructures. Both experimental and simulation results established that FM structure exhibited superior strength and FP structure demonstrated better elongation while FB structure yielded moderate strength and ductility. The von Mises stress and plastic strain distribution of the individual phase was predicted at different stages of deformation and subsequent statistical analyses indicated that hard phases experienced maximum stress whereas, maximum straining occurred in soft ferrite phase for all three structures. Micromechanical simulation further revealed that strain accumulation occurred at the F–P and F–B interfaces while the same was observed within the martensite particles apart from the F–M interfaces for FM. These observations were further substantiated through the identification of void and crack initiation sites via subsurface examinations of failed tensile specimens.


Steel Microstructural modelling Representative volume element Finite element simulation 



The assistance received from the Centre of Excellence on Microstructurally Designed Advanced Materials Development, TEQIP-III of Indian Institute of Engineering Science and Technology (IIEST), Shibpur to carry out a part of this work is gratefully acknowledged.


  1. 1.
    G.R. Speich, R.L. Miller, Struct. Prop. Dual-Phase Steels 1, 424 (1979)Google Scholar
  2. 2.
    M. Sarwar, R. Priestner, J. Mater. Sci. 31, 2091 (1996)CrossRefGoogle Scholar
  3. 3.
    E. Ahmad, R. Priestner, J. Mater. Eng. Perform. 7, 772 (1998)CrossRefGoogle Scholar
  4. 4.
    M. Habibi, R. Hashemi, E. Sadeghi, A. Fazaeli, A. Ghazanfari, H. Lashini, J. Mater. Eng. Perform. 25, 382 (2016)CrossRefGoogle Scholar
  5. 5.
    G. Krauss, S.W. Thompson, ISI J Int. 35, 937 (1995)CrossRefGoogle Scholar
  6. 6.
    T. Gladman, I.D. McIvor, F.B. Pickering, J. Iron Steel Inst. 210, 916 (1970)Google Scholar
  7. 7.
    C.M. Bae, C.S. Lee, W.J. Nam, Mater. Sci. Technol. 18, 1317 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Kumar, A. Kumar, Vinaya, R. Madhusudhan, R. Sah, S. Manjini, J. Mater. Eng. Perform. 28, 3596 (2019)Google Scholar
  9. 9.
    I.S. Kim, U. Reichel, W. Dahl, Steel Res. 58, 186 (1987)CrossRefGoogle Scholar
  10. 10.
    A. Fallahi, J. Mater. Sci. Technol. 18, 451 (2002)Google Scholar
  11. 11.
    D.L. Bourell, A. Rizk, Acta Metall. 31, 609 (1983)CrossRefGoogle Scholar
  12. 12.
    C.N. Lanzillotto, F.B. Pickering, Met. Sci. 16, 371 (1982)CrossRefGoogle Scholar
  13. 13.
    R.-M. Rodriguez, I. Gutiérrez, Mater. Sci. Forum 426–432, 4525 (2003)CrossRefGoogle Scholar
  14. 14.
    S.K. Paul, Comput. Mater. Sci. 56, 34 (2012)CrossRefGoogle Scholar
  15. 15.
    V. Uthaisangsuk, U. Prahl, W. Bleck, Eng. Fract. Mech. 78, 469 (2011)CrossRefGoogle Scholar
  16. 16.
    S.K. Paul, Mater. Des. 44, 397 (2013)CrossRefGoogle Scholar
  17. 17.
    A. Fallahi Arezodar, A. Nikbakht, J. Mater. Eng. Perform. 28, 53 (2019)CrossRefGoogle Scholar
  18. 18.
    F.M. Al-Abbasi, J.A. Nemes, Int. J. Solids Struct. 45, 1449 (2003)Google Scholar
  19. 19.
    N. Ishikawa, D.M. Parks, S. Socrate, M. Kurihara, ISIJ Int. 40, 1170 (2000)CrossRefGoogle Scholar
  20. 20.
    B. Anbarlooie, H. Hosseini-Toudeshky, M. Hosseini, J. Kadkhodapour, J. Mater. Eng. Perform. 28, 2903 (2019)CrossRefGoogle Scholar
  21. 21.
    X. Sun, K.S. Choi, W.N. Liu, M.A. Khaleel, Int. J. Plast 25, 1888 (2009)CrossRefGoogle Scholar
  22. 22.
    S.A. Asgari, P.D. Hodgson, C. Yang, B.F. Rolfe, Comput. Mater. Sci. 45, 860 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Marvi-Mashhadi, M. Mazinani, A. Rezaee-Bazzaz, Comput. Mater. Sci. 65, 197 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Ramazani, K. Mukherjee, U. Prahl, W. Bleck, Comput. Mater. Sci. 52, 46 (2012)CrossRefGoogle Scholar
  25. 25.
    S.K. Basantia, V. Singh, A. Bhattacharya, N. Khutia, D. Das, Mater. Today Proc. 5, 18275 (2018)CrossRefGoogle Scholar
  26. 26.
    H.K.D.H. Bhadeshia, Met. Sci. 16, 159 (1982)CrossRefGoogle Scholar
  27. 27.
    ASTM, E8–99. “Standard Test Methods for Tension Testing of Metallic Materials.” Annual Book of ASTM Standards. ASTM (2001). (2001)Google Scholar
  28. 28.
    M. Amirmaleki, J. Samei, D.E. Green, I. van Riemsdijk, L. Stewart, Mech. Mater. 101, 27 (2016)CrossRefGoogle Scholar
  29. 29.
    F.M. Al-Abbasi, J.A. Nemes, Comput. Mater. Sci. 39, 402 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Zhou, A.M. Gokhale, A. Gurumurthy, S.P. Bhat, Mater. Sci. Eng. A 630, 107 (2015)CrossRefGoogle Scholar
  32. 32.
    K.S. Cheong, E.P. Busso, A. Arsenlis, Int. J. Plast 21, 1797 (2005)CrossRefGoogle Scholar
  33. 33.
    A. Ramazani, K. Mukherjee, H. Quade, U. Prahl, W. Bleck, Mater. Sci. Eng. A 560, 129 (2013)CrossRefGoogle Scholar
  34. 34.
    Y. Hou, T. Sapanathan, A. Dumon, P. Culière, M. Rachik, Comput. Mater. Sci. 123, 188 (2016)CrossRefGoogle Scholar
  35. 35.
    D.D. Tjahjanto, S. Turteltaub, A.S.J. Suiker, S. Van Der Zwaag, Model. Simul. Mater. Sci. Eng. 14, 617 (2006)CrossRefGoogle Scholar
  36. 36.
    N. Jia, Z.H. Cong, X. Sun, S. Cheng, Z.H. Nie, Y. Ren, P.K. Liaw, Y.D. Wang, Acta Mater. 57, 3965 (2009)CrossRefGoogle Scholar
  37. 37.
    H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Acta Mater. 62, 197 (2014)CrossRefGoogle Scholar
  38. 38.
    O. Bouaziz, P. B. Irsid, U. Group, G. Usinor, Int. J. Metall. 99, 71 (2002)Google Scholar
  39. 39.
    P. Srithananan, P. Kaewtatip, V. Uthaisangsuk, Mater. Sci. Eng. A 667, 61 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, U. Prahl, Mater. Sci. Eng. A 660, 181 (2016)CrossRefGoogle Scholar
  41. 41.
    R. Bakhtiari, A. Ekrami, Mater. Sci. Eng. A 525, 159 (2009)CrossRefGoogle Scholar
  42. 42.
    M. Mazinani, W.J. Poole, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 38, 328 (2007)CrossRefGoogle Scholar
  43. 43.
    D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957 (2009)CrossRefGoogle Scholar
  44. 44.
    P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin, Mater. Sci. Eng. A 518, 1 (2009)CrossRefGoogle Scholar
  45. 45.
    N.H. Abid, R.K. Abu Al-Rub, A.N. Palazotto, Comput. Mater. Sci. 103, 20 (2015)Google Scholar
  46. 46.
    L. Madej, J. Wang, K. Perzynski, P.D. Hodgson, Comput. Mater. Sci. 95, 651 (2014)CrossRefGoogle Scholar
  47. 47.
    H. Hosseini-Toudeshky, B. Anbarlooie, J. Kadkhodapour, G. Shadalooyi, Mater. Sci. Eng. A 600, 108 (2014)CrossRefGoogle Scholar
  48. 48.
    K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Acta Mater. 57, 2592 (2009)CrossRefGoogle Scholar
  49. 49.
    M. Azuma, S. Goutianos, N. Hansen, G. Winther, X. Huang, Mater. Sci. Technol. 28, 1092 (2012)CrossRefGoogle Scholar
  50. 50.
    Z.T. Zhao, X.S. Wang, G.Y. Qiao, S.Y. Zhang, B. Liao, F.R. Xiao, Mater. Des. 180, 107870 (2019)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2019

Authors and Affiliations

  1. 1.Department of Aerospace Engineering and Applied MechanicsIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia
  2. 2.School of Mechanical EngineeringKalinga Institute of Industrial Technology (D. U.)BhubaneswarIndia
  3. 3.Department of Metallurgy and Materials EngineeringIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia
  4. 4.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations